Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-14T21:35:18.023Z Has data issue: false hasContentIssue false

Silicides for the 65 nm Technology Node

Published online by Cambridge University Press:  01 February 2011

Paul R. Besser
Affiliation:
Technology Development Group, Advanced Micro Devices, Inc. One AMD Place, Mail stop 36, Sunnyvale, CA 94087USA
Simon Chan
Affiliation:
FASL LLC, Advanced Micro Devices, Sunnyvale, CA
Eric Paton
Affiliation:
FASL LLC, Advanced Micro Devices, Sunnyvale, CA
Thorsten Kammler
Affiliation:
AMD Saxony LLC & Co KG, Dresden, Germany
David Brown
Affiliation:
Advanced Micro Devices, East Fishkill, NY
Paul King
Affiliation:
FASL LLC, Advanced Micro Devices, Sunnyvale, CA
Laura Pressley
Affiliation:
FASL LLC, Advanced Micro Devices, Austin, TX
Get access

Abstract

At the 65 nm node, silicide faces formidable challenges. Co is the current process of record for most integrated circuit manufacturers and thus becomes baseline silicide for 65 nm. However, Ni is the likely replacement. Both silicides are challenged to meet the requirements at the 65 nm node. This manuscript reviews the current CoSi2 challenges (dopant interactions, Ge interactions, linewidth extendibility, impurity effects, agglomeration issues, etc). Ni consumes less Si but has its own challenges, including issues with contact leakage and thermal budget, excessive diffusion and oxidation, interactions with dopant and impurities. Both silicides have formation and stability issues in the presence of Ge. Additions of Ge increase the temperature at which a low resistance CoSi2 is formed due to film segregation into CoSi2 and Ge-rich Si-Ge grains. With Ni, additions of Ge decrease the temperature at which NiSi converts to a NiSi2, lead to agglomeration at a lower temperature and lead to germanosilicide formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goto, K. et al., Tech. Digest of IEEE IEDM, 18.2.1 (1995)Google Scholar
2. Clevenger, L.A. et al., IBM J. Res. Develop. 39(4), p. 403 (1995).Google Scholar
3. Maex, K., Materials Science and Engineering, R11, Nos. 2-3 (1993).Google Scholar
4. Yamazaki, T. et al., Proceedings IEEE IEDM, 6.7.1 (1993).Google Scholar
5. Berti, A.C. and Bolkhovsky, V., Proc. of the 1992 VMIC Conf., p. 267 (1992).Google Scholar
6. Tung, R.T. and Schrey, F., Appl. Phys. Lett. 67(15), p. 2164 (1995).Google Scholar
7. Wang, Q.F. et al., 1995 Symp of VLSI Tech. Digest of Technical Papers, p. 17 (1995).Google Scholar
8. Sukegawa, T. et al., Jap. J. Appl. Phys. 36, p. 6244 (1997).Google Scholar
9. Besser, P.R. et al., MRS Symposium Proceedings 514, p. 375 (1998).Google Scholar
10. Lauwers, A. et al., Proceedings of the Int. Interconnect Technology Conference, 99 (1998).Google Scholar
11. Maex, K. et al., IEEE Trans. El. Dev., 46(7), p.1545 (1999).Google Scholar
12. Maex, K. et al., Mat. Res. Soc. Symp. Proc. 525, p. 297, (1998).Google Scholar
13. Kondoh, E. and Maex, K.; Mat. Res. Soc. Proc. 470, p. 245 (1997).Google Scholar
14.“The International Technology Roadmap for Semiconductors” (2001).Google Scholar
15. Thompson, S. et al., Tech. Digest of IEEE IEDM, 3.2.1 (2002).Google Scholar
16. Lu, J.P. et al., Tech. Digest of IEEE IEDM, 14.5.1 (2002).Google Scholar
17. Xiang, Q., Electrochemical Society Proceedings 2002-2, p. 354 (2002).Google Scholar
18. Gannavaram, S., et al, Tech. Dig. of IEEE IEDM, 437, (2000).Google Scholar
19. Huang, H.J., et al., J. Appl. Phys., 88, 1831(2000).Google Scholar
20. Lauwers, A. et al., Proc. Materials for Advanced Metallization (1999).Google Scholar
21. d'Heurle, F.M. and Peterson, C.S., Thin Solid Films 128, p. 283 (1985).Google Scholar
22. Detavernier, C. et al., MRS Symp.Proc. 611, C8.4.1 (2001).Google Scholar
23. Lavoie, C. et al., Proc. Advanced Metallization Conference (2001).Google Scholar
24. Rinderknecht, J. et al., Proc. Materials for Advanced Metallization (2002).Google Scholar
25. Wieczorek, K. et al., MRS Symp.Proc. 611, p. C5.1 (2001).Google Scholar
26. Meer, H. van den and Meyer, K. d., 2002 Symp. on VLSI Technology (2002).Google Scholar
27. Murarka, S.P., Silicides for VLSI Applications, Academic Press, New York, 1983.Google Scholar
28. Lavoie, C. et al., Defect and Diffusion Forum 194-199, 14771490 (2001)Google Scholar
29. Lavoie, C. et al., Electrochem. Soc. Symp. Proc. 2002-11, 455467 (2002)Google Scholar
30. Detavernier, C. et al., J. Appl. Phys. 93, p. 2510 (2003)Google Scholar
31. Rinderknecht, J. et al., Microelectronic Engineering 64, p. 143 (2002).Google Scholar
32. Xu, D.X. et al., Mat. Res. Soc. Proc. 402, p. 59 (1996).Google Scholar
33. Chen, J. et al. J. Electrochem. Soc. 144(7), P. 2437 (1997).Google Scholar
34. Xiang, Q. et al., ISTDM 2003 (2003).Google Scholar
35. Xiang, Q. et al., To be published at 2003 Symp. on VLSI Technology (2003).Google Scholar