Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T14:03:05.263Z Has data issue: false hasContentIssue false

Si/Ge/Si(001) Magnetron Sputter Heteroepitaxy: the Initial Stages of “Hut”- Cluster Overgrowth

Published online by Cambridge University Press:  10 February 2011

B. Vögeli
Affiliation:
Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich
M. Kummer
Affiliation:
Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich
H. Von Känel
Affiliation:
Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich
Get access

Abstract

We show that the capping of Ge/Si(001) hut clusters with epitaxial Si cannot be easily realised. Even for growth temperatures as low as 300°C, Ge segregation during the Si deposition leads to a Si1-xGex alloy in both the wetting layer and the clusters which reduces the misfit of the system. In turn it is no longer beneficial to release the strain energy by forming small islands. On the contrary, there appears to be a metastable state for exhibiting a flat surface. Thus we find a 3D to 2D transition which at low Si coverages is probably thermally activated. At higher coverages, however, the transition becomes a barrier-less, resulting in the complete dissolution of the hut clusters. Annealing experiments prove that the resulting 2×8 reconstructed Si1-xGex surface is not in thermodynamic equilibrium. During the melting of a hut cluster a number of new facets are formed, mainly at the edges of the clusters and at the top, where the apex becomes substituted by a {001} facet. Our results emphasize that the melting of the Ge/Si(001) hut clusters is a serious obstacle to their application, e. g. in electroluminescence devices. It has to be solved, e. g. by the use of surfactants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Koide, Y., Zaima, S., Ohshima, N. and Yasuda, Y., Jpn. J. Appl. Phys. 28, 690 (1989)Google Scholar
[2] Mo, Y.-W., Savage, D. E., Swartzentruber, B.S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990)Google Scholar
[3] Jesson, D. E., Chen, K. M., Pennycook, S. J., Thundat, T., and Warmack, R. J., Phys. Rev. Lett. 77, 1330 (1996)Google Scholar
[4] Goldfarb, I., Hayden, P. T., Owen, J. H. G., and Briggs, G. A. D., Phys. Rev. Lett. 78, 3959 (1997)Google Scholar
[5] Jesson, D. E., Chen, K. M., and Pennycook, S. J., Mater. Res. Soc. Symp. Proc. April 1996, 31Google Scholar
[6] Goldfarb, I., Hayden, P. T., Owen, J. H. G., and Briggs, G. A. D., Phys. Rev. B 56, 10459 (1997)Google Scholar
[7] Chen, Y. and Washburn, J., Phys. Rev. Lett. 77, 4046 (1996)Google Scholar
[8] Vögeli, B., Zimmermann, S., and von Känel, H., Thin Solid Films, in pressGoogle Scholar
[9] Tersoff, J. and Tromp, R. M., Phys. Rev. Lett. 70, 2782 (1993)Google Scholar
[10] Tersoff, J., Phys. Rev. B 43, 9377 (1991)Google Scholar
[11] Tersoff, J. and LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994)Google Scholar
[12] Steinfort, A. J. et al., Phys. Rev. Lett. 77, 2009 (1996)Google Scholar
[13] Schiltges, G., private communication.Google Scholar
[14] Mo, Y. W. and Lagally, M. G., Surf. Sci. 248, 313 (1991)Google Scholar
[15] Apetz, R., Vescan, L., Hartmann, A., Dieker, C., and Lüth, H., Appl. Phys. Lett. 66, 445 (1995)Google Scholar
[16] Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989)Google Scholar