Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T07:45:15.679Z Has data issue: false hasContentIssue false

Si1-xGex Nanocrystals Observed by EFTEM: Influence of the Dry and Wet Oxidation Process

Published online by Cambridge University Press:  01 February 2011

A. Cuadras
Affiliation:
Dept. Electronic Engineering, EPSC-UPC, Av. Canal Olímpic s/n, 08860 Castelldefels, Spain, email: cuadras@eel.upc.edu
J. Arbiol
Affiliation:
Dept. Electronics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
B. Garrido
Affiliation:
Dept. Electronics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
J.R Morante
Affiliation:
Dept. Electronics, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
A. Rodriguez
Affiliation:
Dept. Electronic Technology, E.T.S.I. de Telecomunicación, UPM, Ciudad Universitaria s/n, 28040 Madrid
T. Rodríguez
Affiliation:
Dept. Electronic Technology, E.T.S.I. de Telecomunicación, UPM, Ciudad Universitaria s/n, 28040 Madrid
Get access

Abstract

We report about the formation of Si1-xGex nanocrystals (NC) in an oxide matrix after oxidizing a polycrystalline Si0.7Ge0.3 layer in wet and dry conditions. We have characterized the NC by Energy Filtered Transmission Electron Microscopy (EFTEM). EFTEM images analyses show the evolution of the oxidation of polycrystalline Si0.7Ge0.3 layer. We observe that a layer with Ge-rich nanoclusters is formed. For wet oxidations we find Ge-rich Si1-xGex nanocrystals while for dry oxidations Si is oxidized faster and Ge is completely segregated. Results are contrasted with infrared and Raman spectroscopies. In conclusion, wet oxidation seems to be preferable to oxidize polycrystalline Si1-xGex to obtain Ge-rich NC embedded in an oxide matrix, as both Ge and Si are oxidized, in contrast to dry oxidation, where Ge is mainly segregated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. López, M., Garrido, B., Garcia, C., Pellegrino, P., Pérez-Rodríguez, A., Morante, J.R., Bonafos, C., Carrada, M., Claverie, A. Appl. Phys. Lett. 80, 1637 (2002)Google Scholar
2. Skorupa, W., Rebohle, L., Gebel, T. Appl. Phys. A 76, 1049 (2003)Google Scholar
3. Iwayama, T. S., Kurumado, N., Hole, D. E., and Townsend, D. E., J. Appl. Phys. 83, 6018 (1998)Google Scholar
4. Kolobov, A.V., Wei, S. Q., Yan, W. S., Oyanagi, H., Maeda, Y., Tanaka, E. Phys. Rew. B 67, 195314 (2003)Google Scholar
5. Wellner, A., Paillard, V., Bonafos, C., Coffin, H., Claverie, A., Schmidt, B., Heinig, K.H. J. Appl. Phys. 94, 5639 (2003)Google Scholar
6. Maeda, Y. Phys. Rev. B 51, 1658 (1995)Google Scholar
7. Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993)Google Scholar
8. Zhu, Y., Yuan, L., Ong, P.P. J. Appl. Phys. 93, 6029 (2003)Google Scholar
9. Yoon, T.S., Kim, K.B. J. Vac. Sci. Technol. B 20, 631 (2002)Google Scholar
10. Kolobov, A.V., Oyanagi, H., Brunner, K., Abstreiter, G., Maeda, Y., Shklyaev, A.A., Yamasaki, S, Ichikawa, M., Tanaka, K. J. Vac. Sci. Technol. A 20, 1116 (2002)Google Scholar
11. Huang, S.H., Ma, X. Y., Wang, X. J., Lu, F. Nanotechnol. 14, 25 (2003)Google Scholar
12. Torchynska, T.V., Aguilar-Hernandez, J., Schacht Hernández, L., Goldstein, Y., Many, A., Jedrzejewski, J., Kolobov, A.V. J. Luminesc. 102–103, 557 (2003)Google Scholar
13. Olivares, J., Sangrador, J., Rodríguez, A., Rodríguez, T.. J. Electrohem. Soc. 148, C685C689 (2001)Google Scholar
14. Garrido, B., Cuadras, A., Bonafos, C., Morante, J.R., Fonseca, L., Franz, M., Pressel, K. Microel. Eng. 48, 207 (1999)Google Scholar
15. Lucovsky, G. J. Non-Crystal. Solids 227–230, 1 (1998)Google Scholar
16. Alonso, M.I., Winer, K. Phys. Rev. B 39, 10056 (1989)Google Scholar
17. Martin, E., Martin, P., Olivares, J., Rodriguez, A., Sangrador, J., Jiménez, J., Rodríguez, T. Thin Solid Films 383, 227 (2001)Google Scholar