Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T19:39:42.134Z Has data issue: false hasContentIssue false

Short-Wavelength Intersubband Light Emission from Optically Pumped GaN/AlN Quantum Wells

Published online by Cambridge University Press:  31 January 2011

Roberto Paiella
Affiliation:
rpaiella@bu.edu
Kristina Driscoll
Affiliation:
kd8@bu.edu, Boston University, Boston, Massachusetts, United States
Yitao Liao
Affiliation:
yitao@bu.edu, Boston University, Boston, Massachusetts, United States
Anirban Bhattacharyya
Affiliation:
anirban1@gmail.com, Boston University, Boston, Massachusetts, United States
Lin Zhou
Affiliation:
lzhou5@asu.edu, Arizona State University, Tempe, Arizona, United States
David J. Smith
Affiliation:
david.smith@asu.edu, Arizona State University, Tempe, Arizona, United States
Theodore D. Moustakas
Affiliation:
tdm@bu.edu, Boston University, Boston, Massachusetts, United States
Get access

Abstract

Due to their large conduction-band offsets, GaN/Al(Ga)N quantum wells are currently the subject of extensive research efforts aimed at extending the spectral range of intersubband optoelectronic devices towards shorter and shorter wavelengths. Here we report our recent measurement of optically pumped intersubband light emission from GaN/AlN quantum wells at the record short wavelength of about 2 μm. Nanosecond-scale optical pulses are used to resonantly pump electrons from the ground states to the second excited subbands, followed by radiative relaxation into the first excited subbands. The intersubband origin of the measured photoluminescence is confirmed via an extensive study of its polarization properties and pump wavelength dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gmachl, C., Ng, H. M., Chu, S. O. N. G., and Cho, A. Y., Appl. Phys. Lett. 77, 3722 (2000).Google Scholar
2 Iizuka, N., Kaneko, K., and Suzuki, N., IEEE J. Quantum Electron. 42, 765 (2006).Google Scholar
3 Li, Y., Bhattacharyya, A., Thomidis, C., Moustakas, T. D., and Paiella, R., Opt. Express 15, 5860 (2007).Google Scholar
4 Baumann, E., Giorgetta, F. R., Hofstetter, D., Lu, H., Chen, X., Schaff, W. J., Eastman, L. F., Golka, S., Schrenk, W., and Strasser, G., Appl. Phys. Lett. 87, 191102 (2005).Google Scholar
5 Vardi, A., Bahir, G., Guillot, F., Bougerol, C., Monroy, E., Schacham, S. E., Tchernycheva, M., and Julien, F. H., Appl. Phys. Lett. 92, 011112 (2008).10.1063/1.2830704Google Scholar
6 Nevou, L., Kheirodin, N., Tchernycheva, M., Meignien, L., Crozat, P., Lupu, A., Warde, E., Julien, F. H., Pozzovivo, G., Golka, S., Strasser, G., Guillot, F., Monroy, E., Remmele, T., and Albrecht, M., Appl. Phys. Lett. 90, 223511 (2007).Google Scholar
7 Nevou, L., Tchernycheva, M., Julien, F. H., Guillot, F., and Monroy, E., Appl. Phys. Lett. 90, 121106 (2007).10.1063/1.2715001Google Scholar
8 Driscoll, K., Liao, Y., Bhattacharyya, A., Zhou, L., Smith, D. J., Moustakas, T. D., and Paiella, R., Appl. Phys. Lett. 94, 081120 (2009).Google Scholar
9 Bellotti, E., Driscoll, K., Moustakas, T. D., and Paiella, R., Appl. Phys. Lett. 92, 101112 (2008).Google Scholar