Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T18:48:36.796Z Has data issue: false hasContentIssue false

Shock-Induced Martensitlc Transformation of Highly Oriented Graphite to Diamond

Published online by Cambridge University Press:  25 February 2011

David. J. Erskine
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
William. J. Nellis
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

Shock-wave profiles of highly ordered pyrolytic graphite shocked normal to the basal plane of the graphite crystal structure have been measured. For graphite with sufficient orientational order a martensitic transformation to a diamond-like phase is observed with a transition onset pressure 19.6±0.7 GPa, the stability limit of the graphite structure under shock compression. The minimum overpressure required for the transformation is not more than 6 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hanneman, R.E., Strong, H.M. & Bundy, F.P., Science 155, 995997 (1967).Google Scholar
2. Clarke, R.S., Appleman, D.E. & Ross, D.R., Nature 291, 396398 (1981).Google Scholar
3. Greiner, N.R., Phillips, D.S., Johnson, J.D. & Volk, F., Nature 333, 440442 (1988).CrossRefGoogle Scholar
4. Lyamkin, A.I., Petrov, E.A., Ershov, A.P., Sakovich, G.V, Staver, A.M., & Titov, V.M, Soy. Phys. Dokl. 3 705706 (1988).Google Scholar
5. Decarli, P.S & Jamieson, J.C., Science 13, 18211822 (1961).Google Scholar
6. Cowan, G.R., Dunnington, B.W. & Holtzman, A.H., U. S. Patent No. 3,401,019 (1968).Google Scholar
7. Fahy, S., Louie, S.G., Cohen, M.L., Phys. Rev. B 4 1191 (1986); Phys. Rev. B 35 7623 (1987)CrossRefGoogle Scholar
8. Bundy, F. P. & Kasper, J. S., J. Chem. Phys. 46, 3437 (1967).Google Scholar
9. Utsumi, W. and Yagi, T., Science 252, 1542 (1991).Google Scholar
10. Takano, K. J. and Wakatsuki, M., Jpn. J. Appl. Phys. 30. p. L860, (1991).Google Scholar
11. Goncharov, A. F., Makarenko, I. N., and Stishov, S.M., Sov. Phys. JETP 69 (2), 380 (1989).Google Scholar
12. Shu, J. F., Mao, H. K., Hu, J. Z., Wu, Y. and Hemley, R. J., Bull. Am. Phys. Soc. 116, No. 3, p 479, March 1991.Google Scholar
13. McQueen, R.G. & Marsh, S.P., in Behavior of Dense Media Under High Dynamic Pressures (Gordon and Breech, New York, 1968).Google Scholar
14. Anan'in, A.V., Dremin, A.N., Kanel', G.I. and Pershin, S.V., Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 112 (1978).Google Scholar
15. Gogulya, M.F., Fiz. Goreniya. Vzryva 25,95 (1989).Google Scholar
16. Gust, W. H., Phys. Rev. B 22, 47444756 (1980).Google Scholar
17. Coleburn, N.L., J. Chem. Phys. 40, 7177 (1964).Google Scholar
18. Erskine, D.J. and Nellis, W.J., Nature 349, 317 (1991).Google Scholar
19. Pyaternev, S.V., Pershin, S.V., Dremin, A.N., Sov. Combustion, Explosion, and Shock Waves 22 756761 (1986).CrossRefGoogle Scholar
20. Zeldovich, Ya. B. & Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 750–756 (Academic Press, New York, 1967).Google Scholar
21. Hemsing, W. F., Rev. Sci. Instrum. 50 7378 (1979).Google Scholar
22. Reynolds, W. N., Physical Properties of Graphite, 3–5 (Elsevier, Amsterdam, 1968).Google Scholar
23. McQueen, R. G., Marsh, S. P. & Fritz, J. N., J. Geophys. Rsrch. 72 4999 (1967).CrossRefGoogle Scholar
24. Erskine, D.J. and Nellis, W.J., accepted for publication, J. Appl. Phys., 71 No. 10 (1992).Google Scholar
25. Pavlovskii, M.N., Soy. Phys. Solid State 13, 741742 (1971).Google Scholar
26. Doran, D. G., J. Appl. Phys. 34, 844851 (1964).Google Scholar
27. Johnson, Q. & Mitchell, A. C., Phys. Rev. Lett. 29 1369 (1972).Google Scholar
28. Hirai, H. and Kondo, K., Proc. Japan Acad., 67, Ser. B 22 (1991); Science Vol. 252.CrossRefGoogle Scholar
29. Mitchell, A. C., Shaner, J. W. & Keeler, R. N., Xth AIRAPT Int. High Prss. Conf., Physica 139 & 140B 386 (1986).Google Scholar
30. Thiel, M. van & Ree, F. H., Int. J. Thermophysics 10, 227236 (1989).Google Scholar
31. Kurdyumov, A. V., Ostrovskaya, N.F., and Pilyankevich, A. N., Soy. Powder Metallurgy and Metal Ceramics 27, 32 (1988).Google Scholar