Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T13:09:25.204Z Has data issue: false hasContentIssue false

Shape Variations and Control in Self-Assembled Metal Nanoclusters

Published online by Cambridge University Press:  11 February 2011

M. Zubris
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
M. Solimando
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
E. P. Goldberg
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
S. Reich
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, ISRAEL
R. Tannenbaum
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Get access

Abstract

The selective interaction of metal clusters with various polymers constitutes the basis for the self-assembly approach to the synthesis of organic-inorganic hybrid materials, that leads to the control of particle size, geometry and dispersion gradient. Metal particles were synthesized by the thermal decomposition of an organometallic precursor, in this case, iron pentacarbonyl, in the presence of a polymer matrix. Under the conditions utilized for these reactions, the aggregation of the metallic clusters competed with the interactions between the growing metal fragments and the polymer matrix. The dominance of one reaction route as compared to the other, ultimately determined the equilibrium particle shape, size and distribution for each metal-polymer system. In this work, we attempted to analyze the formation of iron oxide nanoclusters in several structurally-distinct polymers, and developed a general mechanistic view to explain the characteristics of the polymer-metal oxide hybrid materials that were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Belcher, A. M., Hansma, P. K., Stucky, G. D., and Morse, D. E., Acta Mater. 46, 733736 (1998).Google Scholar
2. Alivisatos, A. P., Harris, A. L., Levinos, N. J., Steigerwald, M. L., and Brus, L. E., J. Chem. Phys. 89, 4001 (1988).Google Scholar
3. Kernizan, C. F., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C., J. Appl. Phys. 67(9), 5897 (1990).Google Scholar
4. Brus, L. E., J. Phys. Chem. 90, 2555 (1986).Google Scholar
5. Bradley, J. S., Millar, J. M., and Hill, E. W., J. Am. Chem. Soc. 113, 4016 (1991).Google Scholar
6. Schmid, G., Morun, B., and Malm, J.-O., Angew. Chem. 101, 772 (1989); Angew. Chem. Intl. Ed. Engl. 28, 778 (1989).Google Scholar
7. Kiwi, J., and Grätzel, M., J. Am. Chem. Soc. 101, 7214 (1979);Google Scholar
Toshima, N., and Takahashi, T., Bull. Chem. Soc. Jpn. 65, 400 (1992).Google Scholar
8. Tang, J. G., Hu, K., Liu, H. Y., Guo, D., and Wu, R. J., J. App. Pol. Sci. 76, 18571864 (2000).Google Scholar
9. Pitcher, M. W., Cates, E., Raboin, L., and Bianconi, P. A., Chem. Mat. 12, 17381742 (2000).Google Scholar
10. Tannenbaum, R., Langmuir 13(19), 5056 (1997), and pertinent references therein.Google Scholar
11. Rotstein, H. G., Novick-Cohen, A., and Tannenbaum, R., Stat. Phys. 90(1/2), 119 (1998).Google Scholar
12. Rotstein, H. G., and Tannenbaum, R., J. Phys. Chem. B 106(1), 146 (2002).Google Scholar
13. Bronstein, L. M., Chernyshov, D. M., Valetsky, P. M., Wilder, E. A., and Spontak, R. J., Langmuir 16(22), 82218225 (2000).Google Scholar
14. Zanchet, D., Hall, B. D., and Ugarte, D., J Phys Chem. B 104(47), 1101311018 (2000).Google Scholar
15. Tang, Z., and Wang, E., J. Electroanal. Chem. 496(1–2), 8287 (2001).Google Scholar
16. Pardoe, H., Chua-Anusorn, W., Pierre, T. G. St., and Dobson, J., J. Magn. Magn. Mater. 25(1–2), 4146 (2001).Google Scholar
17. Stevenson, J. P., Rutnakornpituk, M., Vadala, M., Esker, A. R., Charles, S. W., Wells, S., Dailey, J. P., and Riffle, J. S., J. Magn. Magn. Mater. 225(1–2), 4758 (2001).Google Scholar
18. Noack, K., Helv. Chim. Acta 45, 1987 (1962).Google Scholar
19. Billmeyer, F. W., “Introduction to Polymer Science and Technology,” Eds. Kaufman, H. S., and Falcetta, T. T., Wiley-Interscience (1977), p. 186.Google Scholar
20. Ball, J. M., Carr, J., and Penrose, O., Commun. Math. Phys. 104, 657 (1986).Google Scholar
21. Flory, P. J., and Fox, T. G., J. Am. Chem. Soc. 73, 1904 (1951).Google Scholar
22. Flory, P. J., “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, New York (1953).Google Scholar
23. Graessley, W. W., Adv. Polym. Sci., 16, 1 (1974).Google Scholar
24. Bird, R. B., Curtis, C. F., Hassager, O., and Armstrong, R. C., “Dynamics of Polymeric Liquids: Vol. 2, Kinetic Theory,” 2nd ed. (1st ed. 1976), Wiley, New York (1987).Google Scholar
25. deGennes, P. G., “Scaling Concepts in Polymer Physics,” Cornell University Press, Ithaca, New York (1979).Google Scholar
26. Reetz, M. T., Helbig, W., Quaiser, S. A., Stimming, U., Breuer, N., and Vogel, R., Science 267, 367 (1995).Google Scholar
27. Tadd, E., Bradley, J., and Tannenbaum, R., Langmuir 18(6), 2378 (2002).Google Scholar
28. Hariharan, R., and Russell, W. B., Langmuir 14(25), 7104 (1998).Google Scholar
29. Dan, N., Langmuir 16(8), 4045 (2000).Google Scholar
30. Tannenbaum, R., Flenniken, C. L., and Goldberg, E. P., J. Polym. Sci., Polym. Phys. Ed. 25, 13411358 (1987), and pertinent references therein.Google Scholar
31. Reich, S., and Goldberg, E. P., J. Polym. Sci. Polym. Phys. Ed. 21(6), 869879 (1983).Google Scholar
32. Griffiths, C. H., O'Horo, M. P., and Smith, T. W., J. Appl. Phys. 50(11), 71087115 (1979).Google Scholar
33. Tannenbaum, R., Reich, S., Flenniken, C. L., and Goldberg, E. P., Adv. Mat. 14(19), 14021405 (2002).Google Scholar