Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T23:33:47.739Z Has data issue: false hasContentIssue false

Shape Engineered InAs Quantum Dots with Stabilized Electronic Properties

Published online by Cambridge University Press:  11 February 2011

V. Tokranov
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
M. Yakimov
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
A. Katsnelson
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
K. Dovidenko
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
M. Lamberti
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
S. Oktyabrsky
Affiliation:
School of NanoSciences and NanoEngineering, University at Albany–SUNY, Albany, NY 12203, U.S.A.
Get access

Abstract

We have studied the influence of overgrowth procedure and a few monolayer-thick AlAs overlayer on the properties of self-assembled InAs quantum dots (QDs) using scanning electron microscopy (SEM) and photoluminescence (PL). PL spectroscopy was used to optimize optical properties of the QDs by shape engineering (QD truncation) through adjustment of the thickness of overlayers and temperature of the subsequent heating. QDs with 6 nm - thick overlayer with subsequent heating up to 560°C was found to have the highest PL intensity at room temperature and the lowest FWHM, 29 meV. Ground state energy of the truncated QDs is very stable against variations of growth parameters. 1.23 μm edge-emitting laser of triple-layer QD structure demonstrated room temperature threshold current density, 74 A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, G., Huffaker, D. L., Zou, Z., et al., IEEE Photon. Technol. Lett., 11, 301 (1999).Google Scholar
2. Eliseev, P. G., Li, H., Stintz, A., Newell, T. C., et al., Appl. Phys. Lett., 77, 262 (2000).Google Scholar
3. Huang, X., Stintz, A., Hains, C. P., et al., IEEE Photon. Technol. Lett., 12, 227 (2000).Google Scholar
4. Leonard, D., Kishnamurthy, M., Reaves, C. M., et al., Appl. Phys. Lett., 63, 3203 (1993).Google Scholar
5. Ledentsov, N. N., Ustinov, V. M., Egorov, A. Yu., et al., Semicond., 28, 832 (1994).Google Scholar
6. Xie, Q., Chen, P., and Madhukar, A., Appl. Phys. Lett. 65, 2051 (1994).Google Scholar
7. Lian, G. D., Yuan, J., Brown, L.M., Kim, G.H., Ritchie, D.A., Appl. Phys. Lett., 73, 49 (1998).Google Scholar
8. Arzberger, M., Käsberger, U., Böhm, G., et al., Appl. Phys. Lett., 75, 3968 (1999).Google Scholar
9. Tsatsul'nikov, A. F., Kovsh, A. R., Zhukov, A. E., et al., J. Appl. Phys., 88, 6272 (2000).Google Scholar
10. Wei, Y. Q., Wang, S. M., Ferdos, F., Vukusic, J., et al., Appl. Phys. Lett., 81, 1621 (2002).Google Scholar
11. Wasilewski, Z. R., Fafard, S., and McCaffrey, J. P., J. Crystal Growth., 201, 1131 (1999).Google Scholar
12. Sizov, D. S., Maksimov, M. V., Tsatsul'nikov, A. F., et al., Semicond., 36, 1020 (2002).Google Scholar
13. Kim, J., Wang, L. W., and Zunger, A., Phys. Rev. B., 57, R9408 (1998).Google Scholar
14. Pryor, Graig, Phys. Rev. B., 60, 2869 (1999).Google Scholar
15. Shchekin, O. B., Park, G., Huffaker, D. L., Deppe, D. G., Appl. Phys. Lett., 77, 466 (2000).Google Scholar
16. Asryan, L. V., Grundmann, M., Stier, O., Suris, R. A., et al., J. Appl. Phys., 90, 1666 (2001).Google Scholar
17. Tokranov, V., Yakimov, M., Katsnelson, A., et al., Proceedings of SPIE, 4656, 79 (2002).Google Scholar