Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T03:51:48.362Z Has data issue: false hasContentIssue false

Shallow-Junction Formation by Rapid Thermal Diffusion into Silicon from Doped Spin-on Glass Films

Published online by Cambridge University Press:  22 February 2011

L. Ventura
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
A. Slaoui
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
B. Hartiti
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
J. C. Muller
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
R. Stuck
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
P. Siffert
Affiliation:
Laboratoire PHASE (UPR 292 CNRS) 23 rue du Loess, BP 20, F-67037 STRASBOURG Cedex 2, FRANCE
Get access

Abstract

Here we investigate the possibility to use rapid thermal annealed spin-on doped glass (SOG) films as a doping source as well as a surface passivation layer. The dilution of the SOG liquid source with methanol allows to control the oxide film thickness and the dopant concentration. The results show that the combination of spin-on film (after dilution) and RTP can produce shallow lightly doped emitters. Junction depths less than 0.2 µm and surface concentrations in the range 1−20 × 1019 cm−3 are obtained. Sheet resistances lower than 150 Ω/□ are easily reached. Moreover, the minority-carrier diffusion length is improved due to the gettering effect induced by phosphorus diffusion. The use of the remaining SOG oxide film as a passivation layer makes this technique favourable for some application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Wilson, S. R., Paulson, W. M., Gregory, R. B., Hamdi, A. H., MacDaniel, F. D., J. Appl. Phys. 55, 4162 (1984).Google Scholar
[2] Sedgwick, T. O., Michel, A. E., Deline, V. R., Cohen, S. A., Lasky, J. B., J. Appl. Phys. 63, 1452 (1988).Google Scholar
[3] Borisenko, V. E., and Larsen, A. N., Appl. Phys. Lett. 43, 582 (1983).Google Scholar
[4] Fogarassy, E., Stuck, R., Hodeau, M., Williaux, A., Toulemonde, M., Siffert, P., Proceeding Photovoltaic Solar Energy Conf III, Cannes, France, 1980, ed. Platz, W. (Reidel Publ. Comp., Dordrecht 1981), p 639.CrossRefGoogle Scholar
[5] Carey, P. G., and Sigmon, T. W., Press, R. L., Fahlen, T. S., IEEE Electron. Dev. Lett. EDL–7, 440 (1986).CrossRefGoogle Scholar
[6] Elliq, M., Slaoui, A., Fogarassy, E., Pattyn, H., Stuck, R., Siffert, P., Mater. Res. Soc. Symp Proc. 109, 159 (1991).Google Scholar
[7] Hartiti, B., Slaoui, A., Muller, J. C., Stuck, R., Siffert, P., J. Appl. Phys. 71, (1992) 5474.Google Scholar
[8] Hartiti, B., Slaoui, A., Fogarassy, E., Pattyn, H., Stuck, R., Siffert, P., Mater. Res. Soc. Symp Proc. 109, 159 (1991).Google Scholar
[9] Schindler, R., Reis, I., Wagner, B., Eyer, A., Lautenschlager, H., Schetter, C., Warta, W., Hartiti, B., Muller, J. C. and Siffert, P., Mater. Res. Soc. Symp Proc. 109, 162 (1991).Google Scholar
[10] Geedham, A. M., Goodman, L. A., Gossenberg, H. F., RCA 44, 326 (1983).Google Scholar
[11] Reindl, K., Solid-State Electronics 16, 181 (1973).CrossRefGoogle Scholar
[12] Usami, A., Ando, M., Tsunckane, M., Wada, T., IEEE Trans. Electron. Dev. TED–39, 105 (1992).CrossRefGoogle Scholar
[13] Zagozdzon-Wosik, W., Grabiec, P. B., Lux, G., J. Appl. Phys. 75, 337 (1994).Google Scholar
[14] Ventura, L., Hartiti, B., Slaoui, A., Muller, J.C. and Siffert, P., MRS Conf Proc., V. 284, ed. Kanicki, J. and Devine, R.A.B., (1992).Google Scholar
[15] Itoh, S., Homma, Y., Sasaki, E., Uchimura, S. and Morishima, H., J. Electrochem. Soc. 137, 1212 (1990).Google Scholar
[16] Fair, R. B., in “Physics and Chemistry of Impurity Diffusion and Oxidation of Silicon”, ed. by Kahng, D (Academic Press, New York, 1981), p.1.Google Scholar
[17] White, C. W., Narayan, J., Young, R. T., in “Laser-Solid Interactions and Laser Processing”, ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M (AIP, New York, 1979), p.275.Google Scholar
[18] Thakur, R. P. S., and Singh, R., Appl. Phys. Lett. 64, 327 (1994).CrossRefGoogle Scholar
[19] Cho, B. J., and Kim, C. K., SPIE 180, 180 (1990).Google Scholar
[20] Borisenko, V. E., and Dorofee, A. M., Mater. Res. Soc. Symp. Proc. 13, 375 (1983).Google Scholar
[21] Sparks, D. R., and Chapman, R. G., Alvi, N. S., Appl. Phys. Lett. 49, 525 (1986).Google Scholar
[22] Kang, J. S, and Schroder, D. K., J. Appl. Phys. 65, 2974 (1989).Google Scholar
[23] Hartiti, B., Quat, Vu-Thuong, Eichhammer, W., Muller, J. C., Siffert, P., Appl. Phys. Lett. 55, 873 (1989).Google Scholar