Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-05T10:32:36.331Z Has data issue: false hasContentIssue false

Sensing of Oligopeptides Using Alternatively-Deposited Gold Nanorods for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Published online by Cambridge University Press:  22 February 2012

Masanori Fujii
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Naotoshi Nakashima
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan JST-CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
Yasuro Niidome
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Get access

Abstract

Gold nanorods (NRs) were fixed on an ITO plate and used for the Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SALDI-MS) of oligopeptides (angiotensin I). The SALDI-MS measurements had a high sensitivity to the angiotensin on the ITO plate on which isolated NRs were deposited. Angiotensin molecules in a very diluted solution (1 × 10-11 M) could be detected at m/z = 1297 with a good signal/noise ratio (S/N = 18). In contrast, alternatively deposited NR an ITO plate, which present broad surface plasmon bands, was found to be inactive for SALDI measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tanaka, K., Waki, H., ido, Y., Akita, S., Yoshida, Y. and Yoshida, T.. Rapid Commun. Mass Spectrom., 2, 151154 (1988).CrossRefGoogle Scholar
2.Peterson, D. S.. Mass Spectro. Rev., 26, 1934 (2007).CrossRefGoogle Scholar
3.Arakawa, R. and Kawasaki, H.. Anal. Sci., 26, 12291240 (2010).CrossRefGoogle Scholar
4.Sherrod, S. D., Diaz, A. J., Russell, W. K., Cremer, P. S. and Russell, D. H.. Anal. Chem., 80, 67966799 (2008).CrossRefGoogle Scholar
5.Stumpo, K. A. and Russell, D. H.. J. Phys. Chem. C, 113, 16451647 (2009).CrossRefGoogle Scholar
6.Castellana, E. T., Gamez, E. C., Gómez, M. E. and Russell, D. H.. Langmuir, 26, 60666070 (2010).CrossRefGoogle Scholar
7.Chen, L. C., Mori, K., Hori, H. and Hiraoka, K.. Int. J. Mass Spectrom., 279, 4146 (2009).CrossRefGoogle Scholar
8.Duan, J., Linman, M. J. and Cheng, Q.. Anal. Chem., 82, 50885094 (2010).CrossRefGoogle Scholar
9.Kong, X. L., Huang, L. C. L., Hsu, C.-M., Chen, W.-H., Han, C.-C. and Chang, H.-C.. Anal. Chem., 2005, 259265 (2005).CrossRefGoogle Scholar
10.Chen, C.-T. and Chen, Y.-C.. Anal. Chem., 77, 59125919 (2005).CrossRefGoogle Scholar
11.Wen, X., Dagan, S. and Wysocki, V. H.. Anal. Chem., 79, 434444 (2007).CrossRefGoogle Scholar
12.Kawasaki, H., Yonezawa, T., Watanabe, T. and Arakawa, R.. J. Phys. Chem. C, 111, 1627816283 (2007).CrossRefGoogle Scholar
13.Nakamura, Y., Tsuru, Y., Fujii, M., Taga, Y., Kiya, A., Nakashima, N. and Niidome, Y.. Nanoscale, 3, 37933798 (2011).CrossRefGoogle Scholar
14.Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H. and Arakawa, R.. Anal. Chem., 80, 75247533 (2008).CrossRefGoogle Scholar