Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:53:16.571Z Has data issue: false hasContentIssue false

Semiconductor Quantum Dots for Multicolor Fluorescence Imaging and Spectroscopy of Single Cancer Cells

Published online by Cambridge University Press:  15 February 2011

Xiaohu Gao
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 1639 Pierce Drive, Suite 2001, Atlanta, GA 30322;Winship Cancer Institute, Emory University, 1365 Clifton Road, Suite B4100, Atlanta, GA 30322, U.S.A.
Shuming Nie
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 1639 Pierce Drive, Suite 2001, Atlanta, GA 30322;Winship Cancer Institute, Emory University, 1365 Clifton Road, Suite B4100, Atlanta, GA 30322, U.S.A.
Wallace H. Coulter
Affiliation:
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 1639 Pierce Drive, Suite 2001, Atlanta, GA 30322;Winship Cancer Institute, Emory University, 1365 Clifton Road, Suite B4100, Atlanta, GA 30322, U.S.A.
Get access

Abstract

Luminescent quantum dots (QDs) are emerging as a new class of biological labels with unique properties and applications that are not available from traditional organic dyes and fluorescent proteins. Here we report new developments in using semiconductor quantum dots for quantitative imaging and spectroscopy of single cancer cells. We show that both live and fixed cells can be labeled with multicolor QDs, and that single cells can be analyzed by fluorescence imaging and wavelength-resolved spectroscopy. These results raise new possibilities in cancer imaging, molecular profiling, and disease staging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kricka, L. J., Ed., Nonisotopic Probing, Blotting, and Sequencing, (Academic Press, New York, 1995).Google Scholar
2. Diamandis, E. P. and Christopoulos, T. K., Ed., Immunoassays, (Academic Press, New York, 1996).Google Scholar
3. Haugland, R. P., Handbook of Fluorescent Probes and Research Chemicals, (Molecular Probes, Eugene, Oregon, 1995).Google Scholar
4. Chan, W. C. W., Maxwell, D. J., Gao, X. H., Bailey, R. E., Han, M. Y. and Nie, S. M., Curr. Opin. Biotech. 13, 40 (2002).Google Scholar
5. Niemeyer, C. M., Angew. Chem. Int. Ed. 40, 4128 (2001).Google Scholar
6. Han, M. Y., Gao, X. H., Su, J. Z., and Nie, S. M., Nat. Biotechnol. 19, 631 (2001).Google Scholar
7. Chan, W. C. W. and Nie, S. M., Science 281, 2016 (1998).Google Scholar
8. Bruchez, M. Jr, Moronne, M. Gin, P. Weiss, S. and Alivisatos, A. P., Science 281, 2013 (1998).Google Scholar
9. Wu, X. Y., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F. and Bruchez, M. P., Nat. Biotechno. 21, 41 (2003).Google Scholar
10. Jaiswal, J. K., Mattoussi, H. Mauro, J. M. and Simon, S. M., Nat. Biotechno. 21, 47 (2003).Google Scholar
11. Gross, H. J., Verwer, B. Houck, D. Hoffman, R. A., and Recktenwald, D. P. Natl. Acad. Sci. USA 92, 537 (1995).Google Scholar
12. Racila, E. Euhus, D. Weiss, A. J., Rao, C. McConnell, J. Terstappen, L. W. M. M., , J. and Uhr, W. Natl, P.. Acad. Sci. USA 95, 4589 (1998).Google Scholar
13. Kraeft, S. K., Sutherland, R. Gravelin, L. Hu, G. H., Ferland, L. H., Richardson, P. Elias, A. and Chen, L. B., Clin. Cancer Res. 6, 434 (2000).Google Scholar
14. Bauer, K. D., Torre-Bueno, J. de la, Diel, I. J., Hawes, D. Decker, W. J., Priddy, C. Bossy, B. Ludmann, S. Yamamoto, K. Masih, A. S., Espinoza, F. P. , FP, and Harrington, D. S., Clin. Cancer Res. 6, 3552 (2000).Google Scholar
15. Mattoussi, H. Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V. and Bawendi, M. G., J. Am. Chem. Soc. 122, 12142 (2000).Google Scholar
16. Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H. Charles, P. T. and Mauro, J. M., Anal. Chem. 74, 841 (2002).Google Scholar
17. Rosenthal, S. J., Tomlinson, I. Adkins, E. M., Schroeter, S. Adams, S. Swafford, L. McBride, J. Wang, Y. DeFelice, L. J. and Blakely, R. D., J. Am. Chem. Soc. 124, 4586 (2002).Google Scholar
18. Nowell, P. C., Science 194, 23 (1976).Google Scholar
19. Vogelstein, B. Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M. Nakamura, Y. White, R. Smits, A. M. M. and Bos, J. L., New Engl. J. Med. 319 525 (1988).Google Scholar
20. Sharma, S. D., Jiang, J. W., Hadley, M. E., Bentley, D. L., and Hruby, V. J., Natl, P.. Acad. Sci. USA 93, 13715 (1996)Google Scholar
21. Seeman, P. J. Cell Biol. 32, 55 (1973).Google Scholar
22. Seeman, P. Cheng, D. and Iles, G. H., J. Cell Biol. 56, 519 (1973).Google Scholar
23. Hainfeld, J. F., Science 236, 450 (1987).Google Scholar
24. Hainfeld, J. F., Nature 333, 281 (1988).Google Scholar
25. Hainfeld, J. F. and Furuya, F. R. J. Histochem. Cytochem. 40, 177, (1992).Google Scholar
26. Li, M. Li, B. Jiang, L. Tussila, T. Tkachenko, N. and Lemmetyinen, H. Langmuir 16, 5503 (2000).Google Scholar
27. Aguilar, A. Akita, R. W., Finn, R. S., Ramos, B. L., Pegram, M. D., Kabbinavar, F. F., Pietras, R. J., Pisacane, P. Sliwkowski, M. X. and Slamon, D. J., Oncogene 18, 6050 (1999).Google Scholar
28. Kagan, C. R., Murray, C. B., Nirmal, M. and Bawendi, M. G., Phys. Rev. Lett. 76, 15171520 (1996).Google Scholar
29. Fearon, E. R. and Vogelstein, B. Cell 5, 759 (1990).Google Scholar
30. Liotta, L. and Petricoin, E. Nat. Rev. Genet. 1, 4856 (2000)Google Scholar