Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T20:14:43.021Z Has data issue: false hasContentIssue false

Self-Diffusion in Bulk Metallic Glasses

Published online by Cambridge University Press:  10 February 2011

K. Knorr
Affiliation:
Universität Münster, Institut für Metallforschung, D-48149 Münster, Germany, knorrk@uni-muenster.de
M.-P. Macht
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, D-14109 Berlin, Germany
H. Mehrer
Affiliation:
Universität Münster, Institut für Metallforschung, D-48149 Münster, Germany, knorrk@uni-muenster.de
Get access

Abstract

We have studied self-diffusion in the bulk metallic glasses Zr46.75Ti8.25Cu7.5Ni10Be27.5 and Zr65Cu17.5Ni10A17.5 by means of the radiotracer method. Diffusion of 63Ni has been investigated as a function of temperature in both alloys and also as a function of hydrostatic pressure in Zr46.75Ti8.25Cu7.5Ni10Be27.5. With the isotope 95Zr diffusion studies of the major component Zr were performed in Zr46.75Ti8.25Cu7.5Ni10Be27.5. The diffusivity of 95Zr is much smaller than that of 63Ni. The temperature dependence of 63Ni self-diffusion into Zr46.75Ti8.25Cu7.5Ni10Be27.5 and into Zr65Cu17.5Ni10A17.5 cannot be described by a single set of Arrhenius parameters, breaks in the Arrhenius curves are observed. We attribute the non-linear Arrhenius behaviour to the transition from the glassy to the supercooled liquid state. For the first time activation volumes of diffusion in a supercooled melt have been determined. From the pressure dependence of 63Ni diffusion in Zr46.75Ti8.25Cu7.5 Ni10Be27.5 we get activation volumes around one mean atomic volume favouring a diffusion mechanism via vacancy-like defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Kohinata, M., Ohtera, K., Tsai, A.P., and Masumoto, T., Mater. Trans. JIM 30, 378 (1989).Google Scholar
2. Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).Google Scholar
3. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
4. Inoue, A., Sci. Rep. RITU A42, 1 (1996).Google Scholar
5. Johnson, W.L., Mat. Sci. Forum 225–227, 35 (1996).Google Scholar
6. Busch, R., Kim, Y.J., Schneider, S., and Johnson, W.L., Mat. Sci. Forum 225–227, 77 (1996).Google Scholar
7. Busch, R., Bakke, E., and Johnson, W.L., Mat. Sci. Forum 235–238, 327 (1997).Google Scholar
8. Schneider, S., Geyer, U., Thiyagarajan, P., and Johnson, W.L., Mat. Sci. Forum 235–238, 337 (1997).Google Scholar
9. Wiedemann, A., Keiderling, U., Macht, M.-P., and Wollenberger, H., Mat. Sci. Forum 225–227, 71 (1996).Google Scholar
10. Wanderka, N., Wei, Q., Dool, R., Jenkins, M., Friedrich, S., Macht, M.-P., and Wollenberger, H., Mat. Sci. Forum 269–272, 773 (1998).Google Scholar
11. Ohsaka, K., Chung, S.K., Rhim, W.K., Peker, A., Scruggs, D., and Johnson, W.L., Appl. Phys. Lett. 70, 726 (1997).Google Scholar
12. Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., Appl. Phys. Lett. 71, 476 (1997).Google Scholar
13. Busch, R. and Johnson, W.L., Mat. Sci. Forum 269–272, 577 (1998).Google Scholar
14. Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U., and Faupel, F., Phys. Rev. B57, 10224 (1998).Google Scholar
15. Busch, R., Bakke, E., and Johnson, W.L., Mat. Sci. Forum 225–227 141 (1996).Google Scholar
16. Zappel, J. and Sommer, F., J. Non-Cryst. Solids 205–207, 494 (1996).Google Scholar
17. Meyer, A., Franz, H., Sepiol, B., Wuttke, J., and Petry, W., Europhys. Lett. 36, 379 (1996).Google Scholar
18. Budke, E., Fielitz, P., Macht, M.-P., Naundorf, V., and Frohberg, G., Defect and Diffusion Forum 143–147, 825 (1997).Google Scholar
19. Fielitz, P., Macht, M.-P., Naundorf, V., and Frohberg, G., J. Non-Cryst. Solids, in print.Google Scholar
20. Geyer, U., Schneider, S., and Johnson, W.L., Appl. Phys. Lett. 69, 2492 (1996).Google Scholar
21. Ehmler, H., Heesemann, A., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 80, 4919 (1998).Google Scholar
22. Mehrer, H., Defect and Diffusion Forum 129–130, 57 (1996).Google Scholar
23. Knorr, K., Macht, M.-P., Freitag, K., and Mehrer, H., J. Non-Cryst. Solids, in print.Google Scholar
24. Wenwer, F., Knorr, K., Macht, M.-P., and Mehrer, H., Defect and Diffusion Forum 143–147, 831 (1997).Google Scholar
25. Rummel, G., Zumkley, Th., Eggersmann, M., Freitag, K., and Mehrer, H., Z. Metallkd. 85, 131 (1995).Google Scholar
26. Wenwer, F., Gude, A., Rummel, G., Eggersmann, M., Zumkley, Th., Stolwijk, N.A., and Mehrer, H., Meas. Sci. Technol. 7, 632 (1996).Google Scholar
27. Biersack, J.P. and Ziegler, J.F., Ion Implantation Techniques, Series Electrophysics 10, edited by Ryssel, H. and Glaswischnig, H. (Springer, Berlin, 1982).Google Scholar
28. Busch, R., private communication.Google Scholar
29. Ehmler, H., Räitzke, K., and Faupel, F., J. Non-Cryst. Solids, in print.Google Scholar