Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T05:42:07.725Z Has data issue: false hasContentIssue false

Self-Assembly of Meso- and Nanoparticles into 3d Ordered Arrays and its Applications

Published online by Cambridge University Press:  10 February 2011

Byron Gates
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195–1700, xia@chem.washington.edu
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195–1700, xia@chem.washington.edu
Get access

Abstract

This presentation describes a simple and practical method for self-assembling meso- and nanoparticles into three-dimensionally ordered lattices (opals) over large areas, and the use of these lattices as templates in fabricating highly ordered porous structures such as inverse opals. This method has been applied to a variety of colloidal particles, including silica colloids and polymer beads with diameters in the range of˜50 nm to ˜50 μm. Templating against the 3D opaline lattices provides an effective route to inorganic-organic composite materials and inverse opals having 3D periodic structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sacks, M. D., and Tseng, T.-Y., J. Am. Ceram. Soc. 67, 526, (1984). P. Calvert Nature 317, 201 (1985).10.1111/j.1151-2916.1984.tb19164.xGoogle Scholar
2. Recent studies: (a) Mayoral, R., Requena, J., Moya, J. S., López, C., Cintas, A., Miguez, H., Meseguer, F., Vàzquez, L., Holgado, M., and Blanco, A., Adv. Mater. 9, 257 (1997). (b) L. N. Donselaar, A. P. Phjilipse, and J. Suurmond, Langmuir 13, 6018 (1997). (c) H. Miguez, G. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vàzquez, Langmuir 13, 6009 (1997).10.1002/adma.19970090318Google Scholar
3. See, for example, (a) Ise, N., Angew. Chem. Int. Ed. Engl. 25, 323 (1986). (b) H. B. Sunkara, J. M. Jethmalani, and W. T. Ford, Chem.Mater. 6, 362 (1994). (c) C. A. Murray, and D. G. Grier, American Scientist 83, 238 (1995). (d) A. van Blaaderen, R. Ruel, P. Wiltzius, Nature 385, 321–324 (1997). (e) A. van Blaaderen, MRS Bulletin 23, 39 (1998). (f) A. E. Larsen, and D. G. Grier Nature 385, 230, (1997).10.1002/anie.198603231Google Scholar
4. See, for example, (a) Yeh, S.-R., Seul, M., and Shraiman, B. I., Nature 386, 57, (1997). M. Trau, D. A. Saville, and I. A. Aksay, Science 272, 706, (1996). (b) M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13, 6375, (1997). (c) M. Trau, S. Sankaran, D. A. Saville, and I. A. Aksay Nature 374, 437, (1995). (d) M. Giersig, and P. Mulvaney Langmuir 9, 3408 (1993). (e) Y. Solomentsev, M. Böhmer, and J. L. Anderson, Langmuir 13, 6058 (1997).10.1038/386057a0Google Scholar
5. (a) Park, S. H., Qin, D., and Xia, Y., Adv. Mater. 10, 1028 (1998). (b) S. H. Park, and Y. Xia, Langmuir 15, 266, (1999). (c) B. Gates, D. Qin, and Y. Xia, Adv. Mater., in press (1999).10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2-P3.0.CO;2-P>Google Scholar
6. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. Nature 1997, 386, 143149.10.1038/386143a0Google Scholar