Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T00:56:10.439Z Has data issue: false hasContentIssue false

Self-Assembled InP/GaInP Quantum Dot Lasers

Published online by Cambridge University Press:  10 February 2011

A. Moritz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
R. Wirth
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
A. Kurtenbach
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
K. Eberl
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
A. Hangleiter
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-70550 Stuttgart, Germany
Get access

Abstract

Self-assembled quantum dots of InP in In0.48Ga0.52P can be formed by molecular beam epitaxy (MBE) due to the strong lattice mismatch of 3.7 %. This is a promising method to realize small quantum dots which exhibit strong quantization effects and represent real 0D systems. Lasers with quantum dots in the active region should exhibit very low thresholds due to the low discrete density of states in quantum dots. On the other hand the self organized dots exhibit a considerable size fluctuation leading to an inhomogeneous broadening of the gain spectrum. We have measured the optical gain in quantum dots at room temperature and found two gain peaks which are identified as being due to the wetting layer and the quantum dots by their polarization properties. As expected from the results of the gain measuremlents, cleaved samples under optical pumping show lasing at room temperature of either the quantum dots or of the wetting layer, depending on the experimental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates, Vol. 298 of NATO ASI Series E, Applied Science, edited by Eberl, K., Petroff, P. M., and Demeester, P. (Kluwer Academic Publishers, Dordrecht, 1995).Google Scholar
2. Marzin, J. Y., Gerard, J. M., Barrier, D., and Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
3. Petroff, P. M. and Baars, S. P. D., Superlatt. & Microstruct. 15, 15 (1994).Google Scholar
4. Leonard, D., Pond, K., and Petroff, P. M., Phys. Rev. B 50, 11687 (1994).Google Scholar
5. Nötzel, R., Fukui, T., Hasegawa, H., Temmyo, J., and Tamamura, T., Appl. Phys. Lett. 65, 2854 (1994).Google Scholar
6. Kirchstädter, N., Ledentsov, N. N., Grundmann, M., Bimberg, D., Ustinov, V. M., Ruvimov, S. S., Maximov, M. V., Kopev, P. S., Alferov, Z. I., Richter, U., Werner, P., Gösele, U., and Heydenreich, J., Electron. Lett. 30, 1416 (1994).Google Scholar
7. Kurtenbach, A., Eberl, K., and Shitara, T., Appl. Phys. Lett. 66, 361 (1995).Google Scholar
8. Oshinowo, , Tsukamoto, S., Nishinoka, M., and Arkawa, Y., Appl. Phys. Lett. 64, 1221 (1994).Google Scholar
9. Eberl, K., Kurtenbach, A., Häusler, F. N. K., and Rühle, W. W., in Strained Layer Epitaxy, edited by Fitzgerald, E. A. et al. (Mat. Res. Soc. Sympos., San Francisco, 1995).Google Scholar
10. Shaklee, K. L. and Leheny, R. F., Appl. Phys. Lett. 18, 475 (1971).Google Scholar