Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-25T14:02:10.301Z Has data issue: false hasContentIssue false

Self-Affine Measurements on the Fracture Surface of Plastic Materials by AFM

Published online by Cambridge University Press:  15 February 2011

E. Reyes
Affiliation:
Doctorado en Ingeniería de Materiales, Facultad de Ingenieria Mecánica y Eléctrica U.A.N.L. San Nicolás de los Garza, N.L., 66450, México
C. Guerrero
Affiliation:
Doctorado en Ingeniería de Materiales, Facultad de Ingenieria Mecánica y Eléctrica U.A.N.L. San Nicolás de los Garza, N.L., 66450, México
V. González
Affiliation:
Doctorado en Ingeniería de Materiales, Facultad de Ingenieria Mecánica y Eléctrica U.A.N.L. San Nicolás de los Garza, N.L., 66450, México
M. Hinojosa
Affiliation:
Doctorado en Ingeniería de Materiales, Facultad de Ingenieria Mecánica y Eléctrica U.A.N.L. San Nicolás de los Garza, N.L., 66450, México
Get access

Abstract

The self-aff'me behavior of fracture surfaces of polymeric materials was qualitatively and quantitatively studied. SEM images of fracture surfaces of both polypropylene and polystyrene show Chevron marks at several magnifications. In addition, for polystyrene the mirror and Hackle zones were also observed. For quantitative analysis, the average roughness exponent, ζ, of height profiles generated by AFM images, was estimated by applying the variable bandwidth method. Values of ζ=0.788 and ζ=0.810 were obtained for polypropylene and polystyrene, respectively. These results are in very good agreement with the claimed universal exponent of 0.8 reported in the literature for other non-polymeric materials. By choosing the AFM appropriate operating conditions, measurements of roughness on plastic material surfaces could be performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B.B., Passoja, D.E., and Paullay, A.J., Nature, 308, p. 721722 (1984).Google Scholar
2. Daguier, P., Hélnaux, S., Bouchaud, E., and Creuzet, F., Phys. Rev. E, 53, p. 56375642 (1992)Google Scholar
3. Bouchaud, E., J. Phys.: Condens. Matter, 9, p. 43194344 (1997).Google Scholar
4. Hinojosa, M., Bouchaud, E., and Nghiem, B., in Fracture and Ductile vs. Brittle Behavior-Theory, Modelling and Experiments, edited by Beltz, G.L., Selinger, R.L.B., Kim, K.S., Marder, M.P., (Mater. Res. Soc. Proc., 539, Boston, MA, 1998) p. 203208 Google Scholar
5. Daguier, P., Nghiem, B., Bouchaud, E., and Creuzet, F., Phys. Rev. Lett., 78, p. 1062 (1997).Google Scholar
6. Reyes, E., Guerrero, C., to be published on the 2000 SPE Annual Technical Conference Proceedings, Orlando FL, May (2000).Google Scholar
7. Gonzáilez, V., Hinojosa, M., Guerrero, C., Reyes, E., to be published on the 2000 SPE Annual Technical Conference Proceedings, Orlando FL, May (2000).Google Scholar
8. Tzoganakis, C., Price, B.C., Hatzikiriakos, S.G., J. of Rheology, 37 (2), p. 355366 (1993).Google Scholar
9. Reyes, E., M.Sc. Thesis, Universidad Autónoma de Nuevo León, Monterrey, México (1999).Google Scholar
10. Schmittbuhl, J., Vilotte, J.P., Roux, S., Phys. Rev. E., 15 (1), p. 131147 (1995).Google Scholar
11. Mecholsky, J.J., Freiman, S.W., Rice, R.W., in Fractography in Failure Analysis. American Society for Testing and Materials, p. 363379 (1978).Google Scholar