Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T10:39:24.567Z Has data issue: false hasContentIssue false

Self Consistent-Charge Density-Functional Tight-Binding Method for Simulations of Biological Molecules

Published online by Cambridge University Press:  10 February 2011

M. Elstner
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretische Physik, D - 33098 Paderborn, Germany German Cancer Research Center, Department of Molecular Biophysics, D-69120 Heidelberg
D. Porezag
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretische Physik, D - 33098 Paderborn, Germany
G. Seifert
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretische Physik, D - 33098 Paderborn, Germany
Th. Frauenheim
Affiliation:
Universität-GH Paderborn, Fachbereich Physik, Theoretische Physik, D - 33098 Paderborn, Germany
S. Suhai
Affiliation:
German Cancer Research Center, Department of Molecular Biophysics, D-69120 Heidelberg
Get access

Abstract

We apply a self-consistent charge tight-binding scheme to biomolecules. This method has been shown to give a reliable description of reaction energies, geometries and vibrational frequencies of small organic molecules. We discuss the performance of this method for model peptides and non-bonding interactions in biologically relevant molecular complexes. A comparison with semi-empirical methods and ab initio calculations will be given for DNA base pair H-bonding and stacking interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Elstner, M., Porezag, D., Jungnickel, G., Frauenheim, T., Suhai, S., Seifert, G. in Tight-binding approach to Computational Materials Science, Edited by Turchi, P., Gonis, A. and Colombo, L., MRS Symp. Proc. No. 491 (Materials Research Society, Pittsburgh 1998) 131 Google Scholar
[2] Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G., Phys. Rev. B 58 (1998) 7260 Google Scholar
[3] Porezag, D., Frauenheim, T., Kdhler, T., Seifert, G., Kaschner, R., Phys. Rev. B 51 (1995) 12947 Google Scholar
[4] Dewar, J. S., Zoebisch, E., Healy, E. F., Stewart, J. J. P., J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
[5] Stewart, J. J. P., J. Comp. Chem. 10 (1989) 209, 221 Google Scholar
[6] Voityuk, A. A., Blizniuk, A. A., Theor. CHim. Acta 72 (1987) 223 Google Scholar
[7] Hadzi, D., Koller, J., Hydrogen Bonding by semi-empirical Molecular Orbital Methods, in: Hadzi, D. (ed.), Theoretical treatment of Hydrogen Bonding, John Wiley and Sons 1997 Google Scholar
[8] Jalkanen, K. J., Suhai, S., Chem. Phys. 208 (1996) 81 Google Scholar
[9] Elstner, M., Jalkanen, K., Suhai, S., Herrman, F., Frauenheim, T. to be publishedGoogle Scholar
[10] Sponer, J., Leszczynski, J., Hobza, P., J. Comp. Chem. 17 No. 7 (1996) 841 Google Scholar
[11] Sponer, J., Leszczynski, J., Hobza, P., J. Phys. Chem. 100 No. 13 (1996) 5590 Google Scholar
[12] Sponer, J., Leszczynski, J., Hobza, P., J. Phys. Chem. 100 (1996) 1965 Google Scholar
[13] Hobza, P. et al., J. Comp. Chem. 18 No. 9 (1997) 1136 Google Scholar
[14] Sponer, J., Hobza, P., Chem. Phys. Lett. 267 (1997) 263 Google Scholar
[15] Halgren, T. A., J. Am. Chem. Soc. 114 (19992) 7827 Google Scholar
[16] Lewis, J. P., Sankey, O. F., Biophysical Journal 69 (1995) 1068 Google Scholar