Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:23:22.247Z Has data issue: false hasContentIssue false

Selected-Area Epitaxy of CdTe on GaAs with A Cantilever Shadow Mask

Published online by Cambridge University Press:  25 February 2011

N.K Dhar
Affiliation:
U.S. Army Night Vision and Electro-Optics Directorate lort Belvoir, Virginia 22060
P. Boyd
Affiliation:
U.S. Army Night Vision and Electro-Optics Directorate lort Belvoir, Virginia 22060
M. Martinka
Affiliation:
U.S. Army Night Vision and Electro-Optics Directorate lort Belvoir, Virginia 22060
J.D. Benson
Affiliation:
U.S. Army Night Vision and Electro-Optics Directorate lort Belvoir, Virginia 22060
J.H. Dinan
Affiliation:
U.S. Army Night Vision and Electro-Optics Directorate lort Belvoir, Virginia 22060
A.A. Iliadis
Affiliation:
Electrical Engineering Department, University of Maryland, College Park, Maryland 20742
Get access

Abstract

A cantilever shadow masking technique has been used for the first time to grow CdTe in recesses of GaAs wafers. The use of this technique eliminated the deleterious effects of side wall growth. Scanning electron microscopy, electron channeling, Auger spectroscopy and photoluminescence were used to characterize these structures. An application to planar monolithic infrared focal plane arrays is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zanio, K., Bean, R., Mattson, R., Vu, P., Taylor, S., McIntyre, D., Ito, C. and Chu, M.,Appl.Phy. Lett. 56,1207 (1990)Google Scholar
2. Smith, L.M., Thopson, J., Mackett, P., Jenkin, G.T., Duy, T.N., Gori, P., Cetronio, A., Lanzieri, C. and Moccia, G., Prog in Crystal Growth and Char. i9, 63 (1989).Google Scholar
3. Zanio, Ken and Bean, Ross C., U.S. Patent No. 4 910 154 (20 March 1990).Google Scholar
4. Demeester, P., Buydens, L. and Daele, P. Van, Appl. Phys. Lett. 57, 168 (1990).Google Scholar
5. Beam, E.A. III, Kao, Y.C. and Yang, J.Y., Appl. Phys. Lett. 58, 152 (1991).Google Scholar
6. Charasse, M. N., Bartenlian, B., Hirtz, J.P., Peugnet, A. and Chazelas, J., J. of Elec. Mat., 19, 567 (1990)Google Scholar
7. Barnes, C.E. and Zanio, K., J. Appl. Phys., 46, 3659 (1975)Google Scholar
8. Giles, N.C., Bicknell, R.N. and Schetzina, J.F., J. Vac. Sci. Technol. A5, 3064 (1987).Google Scholar
9. Amirtharaj, P.M. and Dhar, N.K., J. Appl. Phys. 67, 3107 (1990).Google Scholar
10. Feng, Z.C., Bevan, M.J., Choyke, W.J., Krishnaswamy, S.V., J. Appl. Phys. 64, 2595 (1988).Google Scholar
11. Wrobel, J.M., Dubowski, J.J., Becla, P., J. Vac. Sci. Technol. A7, 338 (1989).Google Scholar
12. New, G., Marfaing, Y., Legros, R., Triboulet, R. and Svob, L., J. of Lumin. 21, 293 (1980).Google Scholar
13. Francou, J.M., Saminadayar, K., Pautrat, J.L., Gaillard, J.P., Million, A. and Fontaine, C., J. Crystal Growth, 72, 220 (1985).Google Scholar
14. Summers, C.J., Torabi, A., Wagner, B.K., Benson, J.D., Stock, S.R. and Huang, P.C., SPIE, 659, 153 (1986)Google Scholar