Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-16T02:58:42.467Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Studies of the Initial Stages of Thin Film Growth: the Role of the Surface Dangling Bonds

Published online by Cambridge University Press:  22 February 2011

Ph. Avouris
Affiliation:
IBM T. J. Watson Reseach Center, Yorktown Heights, N.Y., 10598
R. Wolkow
Affiliation:
IBM T. J. Watson Reseach Center, Yorktown Heights, N.Y., 10598
F. Bozso
Affiliation:
IBM T. J. Watson Reseach Center, Yorktown Heights, N.Y., 10598
R. J. Hamers
Affiliation:
IBM T. J. Watson Reseach Center, Yorktown Heights, N.Y., 10598
Get access

Abstract

We present STM and photoemission studies of the reactions of Si(100)-(2×1) and Si(111)–(7×7) with NH3. STM allows us to image the occupied and unoccupied states of the reacting systems and to obtain electronic spectra with atomic lateral resolution. Thus, for the first time, a surface chemical reaction can be probed at the atomic level. We find that both surfaces are reactive even at 100K. However, both the extent of the reaction and the reaction products at 300K are different on the two surfaces. STM also shows that while surface dangling bonds are essential for low-temperature reactivity, not all triplycoordinated Si sites are chemically equivalent. On the 7×7 surface the rest-atoms are more reactive than center-adatoms which, in turn, are more reactive than corner-adatoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moslehi, M. M. and Saraswat, K. C., IEE J. Solid-State Circuits 20, 61 (1985); J. A. Nemetz and R. E. Tressler, Solid State Technol. 26, 209 (1983); J. M. Jasinski, B. S. Meyerson, and B. A. Scott, Ann. Rev. Phys. Chem. 38, 109 (1987).CrossRefGoogle Scholar
2. See for example: Benson, S. W., Thermochemical Kinetics, Wiley, New York, 1976.Google Scholar
3. Bozso, F. and Avouris, Ph., Phys. Rev. Lett. 57, 1185 (1986); Ph. Avouris, F. Bozso and R. J. Hamers, J. Vac. Sci. Technol. B, 5, 1387 (1987).CrossRefGoogle Scholar
4. Kubler, L., Hlil, E. K., Bolmont, D. and Gewinner, G., Suf. Sci. 183, 503 (1987), and references cited therein.CrossRefGoogle Scholar
5. Bozso, F. and Ph. Avouris, to be published.Google Scholar
6. Schlier, R. E. and Farnsworth, H. E., J. Chem. Phys. 30, 917 (1959)CrossRefGoogle Scholar
7. Haneman, D., Rep. Prog. Phys. 50, 1045 (1987), and references cited therein.CrossRefGoogle Scholar
8. Hamers, R. J., Avouris, Ph. and Bozso, F., Phys. Rev. Lett., 59, 2071 (1987).CrossRefGoogle Scholar
9. Takayanagi, K., Tanishiro, Y., Takahashi, M., and Takahacki, S., J. Vac. Sci. Technol. A3, 1502 (1985).CrossRefGoogle Scholar
10. Wolkow, R. and Ph. Avouris, to be published.Google Scholar
11. Daum, W., Ibach, H. and Muller, J. E., Phys. Rev. Lett. 59 1593 (1987).CrossRefGoogle Scholar
12. Northrup, J. E., Phys. Rev. Lett. 57, 154 (1986).CrossRefGoogle Scholar
13. Qian, G.-X. and Chadi, D. J., J. Vac. Sci. Technol. B4, 1079 (1986); D. Vanderbilt, Phys. Rev. Lett. 59, 1456 (1987).CrossRefGoogle Scholar