Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T13:19:24.196Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy of HF-Controlled Si(111) Surfaces

Published online by Cambridge University Press:  25 February 2011

Hiroshi Tokumoto
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Yukinori Morita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Kazushi Miki
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Scanning tunneling microscopy (STM) was made in order to examine the surface structure and roughness in an atomic scale. The surfaces were prepared by several ways: NH4F (pH = 8) dipping just after RCA cleaning or after keeping in dry air for a few weeks; dipping into NH4F (pH = 8) solution or dipping into solutions with pH=10 just after boiling in HNO3. The STM images clearly showed that the surface structure and roughness are dependent on the sample treatments. The smooth surfaces with less defects were obtained for surfaces prepared by removing the HNO3-oxidized layer by NH4F (pH = 8) dipping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ohmi, T., Extended Abstract of the 1991 International Conference on Solid State Devices And Materials, Yokohama, 1991, p.481.Google Scholar
[2] Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H. and Nagasawa, Y., J. Appl. Phys. 64, 3516 (1988).Google Scholar
[3] Burrows, V.A., Chabal, Y.J., Higashi, G.S., Raghavachari, K. and Christman, S.B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
[4] Chabal, Y.J., Higashi, G.S., Raghavachari, K. and Burrows, V.A., J. Vac. Sci. Technol. A 7, 2104 (1989).Google Scholar
[5] Higashi, G.S., Chabal, Y.J., Trucks, G.W. and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
[6] Watanabe, S., Nakayama, N. and Ito, T., Appl. Phys. Lett. 59, 1458 (1991).CrossRefGoogle Scholar
[7] Bell, L.D., Kaiser, W.J., Hecht, M.H. and Grunthaner, F.J., Appl. Phys. Lett. 52, 278 (1988).Google Scholar
[8] Nakagawa, Y., Ishitani, A., Takahagi, T., Kuroda, H., Tokumoto, H., Ono, M. and Kajimura, K., J. Vac. Sci. Technol. A 8, 262 (1990).Google Scholar
[9] Becker, R.S., Higashi, G.S., Chabal, Y.J. and Becker, A.J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
[10] Morita, Y., Miki, K. and Tokumoto, H., Appl. Phys. Lett. 59, 1347 (1991).Google Scholar
[11] Morita, Y., Miki, K. and Tokumoto, H., to appear in Ultramicroscopy (1992).Google Scholar
[12] Morita, Y., Miki, K. and Tokumoto, H., J. J. Appl. Phys. 30, 3570 (1991).CrossRefGoogle Scholar
[13] Morita, Y., Miki, K. and Tokumoto, H., to appear in Appl. Surf. Sci. (1992).Google Scholar
[14] Hessel, H.E., Feltz, A., Reiter, M., Memmert, U. and Behm, R.J., Chem. Phys. Lett. 186, 275 (1991).Google Scholar
[15] Neuwald, U., Hessel, H.E., Feltz, A., Memmert, U., and Behm, R.J., Appl. Phys. Lett., 60, 1307 (1992).Google Scholar