Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T02:51:24.425Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy and Spectroscopy of GuCl2 and CoCl2 Graphite Intercalation Compounds

Published online by Cambridge University Press:  28 February 2011

C.H. Olk
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090
J. Heremans
Affiliation:
Physics Department, General Motors Research Laboratories, Warren, MI 48090
M.S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J.S. Speck
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J.T. Nicholls
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Scanning tunneling microscopy (STM) is used to visualize the structure of copper chloride and cobalt chloride graphite intercalation compounds (GICs). When the samples are biased negatively with respect to the tip, the images show details of the structure of the intercalant layers, and of its effects on the surface graphene layer. When the sample is under positive bias, symmetry properties of the uppermost graphite planes are revealed. Images of the CuCl2 stage 1 GIC display a hexagonal symmetry in which all the atoms of the graphite surface plane appear. This is in contrast to the three-fold symmetry usually seen in atomic resolution STM images of highly oriented pyrolytic graphite (HOPG), which we also observe on a reference sample of HOPG. The three-fold symmetry is attributed to the ABAB stacking of the atomic layers in HOPG. In GICs, this stacking sequence is interrupted by the layer of intercalate, so that for the stage 1 compound all carbon atoms in the plane become equivalent, and six-fold symmetry develops. For a stage 2 (CuC12 or CoCl2) GIC three-fold symmetry is expected to persist. Images of the CoCl2 stage 1 GIC, taken with the sample bias is positive with respect to the tip, display a mixed trigonal and hexagonal symmetry, and may be attributable to the fact that the surface of sample is of mixed stage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binnig, G., Rohrer, H., Revs. of Mod. Phys. 59, 615 (1987).Google Scholar
2. Hansma, P. K., Tersoff, J., J. Appl. Phys. 61, 2 (1987).Google Scholar
3. Feenstra, R. M., Editor, Proceedings, Second International Conference on Scanning Tunneling Microscopy, AIP, New York, NY.Google Scholar
4. Park, S., Quate, C. F., Appl. Phys. Lett. 48, 2 (1986).Google Scholar
5. Soler, J. M., Baro, A. M., Garcia, N., Rohrer, H., Phys. Rev. Lett. 57, 444 (1986).Google Scholar
6. Mamin, H. J., Ganz, E., Abraham, D. W., Thomson, R. E., Clarke, J., Phys. Rev. B 34, 9015 (1986)Google Scholar
7. Schneir, J., Sonnenfeld, R., Hansma, P. K., Tersoff, J., Phys. Rev. B 34, 4979 (1986).Google Scholar
8. Bryant, A., Smith, D. P. E., Quate, C. F., Appl. Phys. Lett. 48, 834 (1986).CrossRefGoogle Scholar
9. Batra, I. P., Garcia, N., Rohrer, H., Salemink, H., Stoll, E., Ciraci, S., Surf. Sci. 181, 126 (1987).Google Scholar
10. Tersoff, J., Phys. Rev. Lett. 57, 440 (1986).CrossRefGoogle Scholar
11. Selloni, A., Carnevali, P., Tosatti, E., Chen, C. D., Phys. Rev. B 31, 2602 (1985).Google Scholar
12. Mizes, H. A., Park, S., Harrison, W. A., Phys. Rev. B 36, 4491 (1987).Google Scholar
13. Ciraci, S., Batra, I. P., Phys. Rev. B 36, 6194 (1987).CrossRefGoogle Scholar
14. Tomanek, D., Louie, S. G., Phys. Rev. B 37, 8327 (1988).CrossRefGoogle Scholar
15. Selloni, A., Chen, C. D., Tosatti, E., Physica Scripta 38, 297 (1988).Google Scholar
16. Mizes, H. A., Harrison, W. A., J. Vac. Sci. Technol. A 6, 300 (1988).Google Scholar
17. Dresselhaus, M. S., Intercalation in Layered Materials,Plenums,NY(1986).Google Scholar
18. Dresselhaus, M. S., Mat. Sci. and Eng. B1, 259 (1988).Google Scholar
19. Gauthier, S., Rousset, S., Klein, J., Sacks, W., Belin, M., J. Vac. Sci. Technol. A 6, 360(1988).Google Scholar
20. Tanaka, M., Mizutani, W., Nakashizu, T., Morita, N., Ygmazaki, S., Bando, H., Ono, M., Kajimura, K., J. Microsc. (Oxford), 152(1), 183 (1988).Google Scholar
21. Anselmetti, D., Wiesendanger, R., Glntherodt, H. J., Phys. Rev. B 39, 11135 (1989).Google Scholar
22. Kelty, S. P., Lieber, C. M., Phys. Rev. B 40, 5856 (1989).CrossRefGoogle Scholar
23. Hamers, R. J., J. Vac. Sci. Technol. B6, 1462 (1988).Google Scholar
24. Qin, X., Kirczenow, G., Phys. Rev. B 39, 6245 (1989).Google Scholar
25. Speck, J. S., Thesis, “Structural Correlations in Graphite and Its Layered Compounds,” Massachusetts Institute of Technology (1989).Google Scholar
26. Atomis, Inc. Berkely, CA/McAllister Technical Services. Berkeley, CA.Google Scholar
27. Olk, C. H., Heremans, J., Dresselhaus, M. S., Speck, J. S. and Nicholls, J. T., Phys. Rev. B 40, 7524 (1990).Google Scholar