Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T16:57:39.229Z Has data issue: false hasContentIssue false

Scanning Cathodoluminescence Microscopy of Polycrystalline GaAs

Published online by Cambridge University Press:  15 February 2011

Jack P. Salerno
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Ronald P. Gale
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
John C. C. Fan
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
John Vaughan
Affiliation:
Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge, Massachusetts 02139
Get access

Abstract

Scanning cathodoluminescence microscopy (SCM) has been used for nondestructive characterization of the optoelectronic properties of heavily Zn-doped, Bridgman-grown polycrystalline GaAs. Grain boundaries can either show no cathodoluminescence contrast, appear as dark lines, or appear slightly brighter than the surrounding matrix. Boundaries with similar surface morphologies can show different contrast. Spectral analysis data indicate that many of the observed features are due to local variations in impurity concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turner, G. W., Fan, J. C. C., Gale, R. P. and Hurtado, O., Conf. Record of the 14th IEEE Photovoltaic Specialists Conference, 1980 (IEEE, New York, 1980), p. 1530.Google Scholar
2. Yang, J. J. J., Dapkus, P. D., Dupuis, R. D. and Yingling, R. D., J. Appl. Phys. 51, 3794 (1980).CrossRefGoogle Scholar
3. Cohen, M. J., Harris, J. S. Jr., and Waldrop, J. R., Inst. Phys. Conf. Ser. No. 45, 263 (1979).Google Scholar
4. Hwang, W., Card, H. C. and Yang, E. S., Appl. Phys. Lett. 36, 315 (1980).Google Scholar
5. Cohen, M. J., Paul, M. D., Miller, D. L., Waldrop, J. R. and Harris, J. S. Jr., J. Vac. Sci. Technol. 17, 899 (1980).Google Scholar
6. Fletcher, R. M., Wagner, D. K. and Ballantyne, J. M., Solar Cells 1, 263 (1980).Google Scholar
7. Spencer, M., Stall, R., Eastman, L. F. and Wood, C. E. C., J. Appl. Phys. 50, 8006 (1979).Google Scholar
8. Turner, G. W., Fan, J. C. C. and Salerno, J. P., Solar Cells 1, 261 (1980).CrossRefGoogle Scholar
9. Cusano, D. A., Solid State Commun. 2, 352 (1964).Google Scholar
10. Wittry, D. B. and Kyser, D. F., J. Appl. Phys. 38, 375 (1967).Google Scholar