Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-03T13:37:11.112Z Has data issue: false hasContentIssue false

Scaled Up Pulsed Deposition Technology: Carburization Resistant Ablation Coatings for Ethylene Pyrolysis Coils

Published online by Cambridge University Press:  01 February 2011

Alok Chauhan
Affiliation:
achauhan@notes.cc.sunysb.edu, Stony Brook University, Materials Science, United States
Mir Anwar
Affiliation:
muneeb03@hotmail.com, Stony Brook University, Materials Science, United States
Kelvin Montero
Affiliation:
kmontero1@gmail.com, Stony Brook University, Materials Science, United States
Henry J White
Affiliation:
hwhite@notes.cc.sunysb.edu, Stony Brook University, Materials Science, United States
Weidong Si
Affiliation:
wds@bnl.gov, Brookhaven National Laboratory, Condensed Matter Physics and Materials Science, United States
Jianming Bai
Affiliation:
jmbai@bnl.gov, Oak Ridge National Laboratory, High Temperature Materials Laboratory, United States
Get access

Abstract

Products derived from ethylene have and will continue to replace metallic materials traditionally used for transportation, building materials, and products we use in our everyday lives. As the demand continues to increase, a more suitable material for the outlet coils of ethylene pyrolysis heaters will have to be identified. In this study, we discuss utilization of scaled up pulsed deposition technology to deposit adherent carburization resistant coatings on the inner diameter of ethylene pyrolysis tubing with the intent of extending tube life. Ablation target material selection was based primarily on elevated temperature properties and the ability of the coating to prevent transformation of the inherent protective chromium oxide surface film to metal carbides while in service. The near optimal settings of the processing parameters for pulsed laser deposition of ceramic SiC on heat resistant tubing traditionally used for ethylene service were investigated using a semi quantitative controlled random search methodology. Minimization of the objective function which was based on width, thickness and coverage of the thin film resulted in an optimal deposition time of 4.3 minutes and surface finish of 272 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, H. M. and Turner, A. F., Appl. Optics 4, 147148 (1965).Google Scholar
2. Greer, J. A. and Van Hook, H. J., Mater. Res. Soc. Symp. Proc. 191, 171176 (1990).Google Scholar
3. Greer, J. A., in Superconductivity and Applications (Kwok, H. S., Kao, Y., and Shaw, S.D., eds.), Plenum, New York 117126 (1989).Google Scholar
4. Greer, J. A., J. Vac. Sci. Technol. A10(4), 18211826 (1992).Google Scholar
5. Greer, J. A., Proc. SPIE 1835, 2130 (1993).Google Scholar
6. Greer, J. A. and Van Hook, H. J., in Proc. SPIE 1377, 7990 (1990).Google Scholar
7. Wang, Q J, Itaka, K, Minami, H, Kawaji, H, Koinuma, H, Sci. Technol. Adv. Mat. 5(5–6), 543547 (2004).Google Scholar
8. Learn, A. J., Haq, K. E., Appl. Phys. Lett. 17, 2629 (1970).Google Scholar
9. Tohda, T., Wasa, K., Hayakawa, S., J. Electrochem. Soc. 127, 4447 (1980).Google Scholar
10. Addaniano, A., Sprague, J. A., Appl. Phys. Lett. 44, 525527 (1984).Google Scholar
11. Chaudhry, M. I., Wright, R. L., J. Mater. Res. 5, 15951598 (1990).Google Scholar
12. Powell, J. A., Larkin, D. J., Matus, L. G., Choyke, W. J., Bradshaw, J. L., Henderson, L., Yoganathan, M., Yang, J., Pirouz, P., Appl. Phys. Lett. 56, 14421444 (1990).Google Scholar
13. Berman, I., Marshall, R. C., Ryan, C. E., Air Force Cambridge Research Laboratories, Technical Report No. 74–0485, (1974).Google Scholar
14. Greer, J. A., in Pulsed Laser Deposition of Thin Films (Chrisey, D. B. and Hubler, G. K., eds.), John Wiley & Sons, Inc. New York, 308 (1994).Google Scholar
15. Hou, Q. R., Gao, J., and Li, S. J., Appl Phys A, 67, 369 (1998).Google Scholar
16. Bonnell, D. W., Schenck, P. K., Hastie, J. W., and Joseph, M., in Proc. Symp. on High Temp. Chemistry, Electrochemical Society, NJ (1990).Google Scholar
17. Price, W. L., Optimiz, J.. Theory App. 74 (3), 333348 (1983).Google Scholar
18. Price, W. L., The Computer Journal 20 (4), 367370 (1977).Google Scholar
19. Kim, D., Kang, M., and Rhee, S., Weld. J. 8, 125s-130s (2005).Google Scholar
20. Chauhan, A., Moran, W., Ge, S., Si, W., and White, H., Scripta Mater. 52, 735738 (2005).Google Scholar