Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T02:15:51.576Z Has data issue: false hasContentIssue false

Ruthenium(II)-nitrosyl polypyridinyl Complexes: from NO/ON Isomerization to NO delivery

Published online by Cambridge University Press:  16 March 2015

Pascal G. Lacroix
Affiliation:
Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, France
Isabelle Malfant
Affiliation:
Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, France
Get access

Abstract

Ruthenium-nitrosyl (RuII(NO)) complexes are stable in the dark, but exhibit a unique photoreactivity which can lead either to a solid state isomerization from RuII(NO) to RuII(ON), or to a nitric oxide (NO·) release in solution. From our recent discovery of a high yield of isomerization (> 92%) in [RuII(py)4Cl(NO)](PF6)2, we have developed a computational strategy aimed at designing switchable nonlinear optical (NLO) material with high contrast (large difference in the on / off NLO response) in the solid state. Our synthetic targets are terpyridine based RuII chromophores in which various substituents can be introduced to adjust the NLO response which, at best, should be vanishing in the off state. Alternatively, these complexes can undergo a photo-induced NO· release in solution, a possibility which becomes increasingly appealing in relation to the discovery of the numerous biological roles of NO·, in the context of the emergence of the photodynamic therapy. A promising fluorene-terpyridine RuII(NO) complex was investigated, which could find an additional interest in relation to its capability for releasing NO· by a two-photon absorption process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Molecular Switches, ed. B.L. Feringa (Wiley-VCH, Weinheim Germany, 2001).Google Scholar
Coe, B.J., Houbrechts, S., Asselberghs, I., Clays, K., and Persoons, A., Angew. Chem. Int. Ed. 38, 366 (1999).3.0.CO;2-D>CrossRefGoogle Scholar
Oudar, J.L., and Chemla, D.S., J. Chem. Phys. 66, 2664 (1977).CrossRefGoogle Scholar
Coe, B.J., Acc. Chem. Res. 39, 383 (2006).CrossRefGoogle Scholar
Champagne, B., Plaquet, A., Pozzo, J.-L., Rodriguez, V., and Castet, F., J. Am. Chem. Soc. 134, 8101 (2012).CrossRefGoogle Scholar
Bonhommeau, S., Lacroix, P.G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I.O., and Rodriguez, V., J. Phys. Chem. C 116, 11251 (2012)CrossRefGoogle Scholar
Sliwa, M., Létard, S., Malfant, I., Nierlich, M., Lacroix, P.G., Asahi, T., Masuhara, H., Yu, P., and Nakatani, K., Chem. Mater. 17, 4727 (2005).CrossRefGoogle Scholar
Hauser, U., Oestriech, V., and Rohrweck, H.D., Z. Physik A 280, 125 (1977).CrossRefGoogle Scholar
Schaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K. W., and Güdel, H.-U., Physical Chemistry, Chemical Physics, 9, 3717 (2007).CrossRefGoogle Scholar
Cormary, B., Malfant, I., Valade, L., Buron-Le Cointe, M., Toupet, L., Todorova, T., Delley, B., Schaniel, D., Mockus, N., Woike, T., Fejfavora, K., Petricek, V., and Dusek, M., Acta Cryst., B65, 612 (2009).CrossRefGoogle Scholar
Cormary, B., Ladeira, S., Jacob, K., Lacroix, P.G., Woike, T., Schaniel, D., and Malfant, I., Inorg. Chem. 51, 7492 (2012).CrossRefGoogle Scholar
Malfant, I., and Cormary, B., CNRS Patent WO 2013/083920 A1, (2013).Google Scholar
Akl, J., Billot, Ch., Lacroix, P.G., Sasaki, I., Mallet-Ladeira, S., Malfant, I., Arcos-Ramos, R., Romero, M., and Farfan, N., New J. Chem. 37, 3518 (2013).CrossRefGoogle Scholar
Akl, J., Sasaki, I, Lacroix, P.G., Malfant, I., Mallet-Ladeira, S., Vicendo, P., Farfán, N., and Santillan, R., Dalton Trans. 45, 12721 (2014).CrossRefGoogle Scholar
Alary, F., and Heuly, J.L., unpublished results .Google Scholar
Lacroix, P.G., Eur. J. Inorg. Chem. 2001, 339.3.0.CO;2-Z>CrossRefGoogle Scholar
Nitric Oxide and cancer : Prognosis, Prevention and Therapy, ed. B. Bonavida, Springer, 2010.Google Scholar
Ford, PC., Nitric Oxide 34, 56 (2013).CrossRefGoogle ScholarPubMed
Pawlicki, M., Collins, H.A., Denning, R.G. and Anderson, H.L., Angew. Chem. Int. Ed. 48, 3244 (2009).CrossRefGoogle Scholar
Blanchard-Desce, M., unpublished results .Google Scholar