Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-27T05:37:33.168Z Has data issue: false hasContentIssue false

Ruby's Optical Transitions: Effects of Pressure-Induced Phase Transformation

Published online by Cambridge University Press:  10 February 2011

Wenhui Duan
Affiliation:
Department of Chemical Engineering and Materials Science, and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA
G. Paiva
Affiliation:
Department of Chemical Engineering and Materials Science, and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA Instituto de Física, Univ. de Sao Paulo, CP 66318, 0 5389–970, Sao Paulo, SP, Brazil
Renata M. Wentzcovitch
Affiliation:
Department of Chemical Engineering and Materials Science, and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA Instituto de Física, Univ. de Sao Paulo, CP 66318, 0 5389–970, Sao Paulo, SP, Brazil
A. Fazzio
Affiliation:
Instituto de Física, Univ. de Sao Paulo, CP 66318, 0 5389–970, Sao Paulo, SP, Brazil
Get access

Abstract

Here we summarize our investigation of the effect of a recently observed phase transformation on ruby's optical transitions. This study involved a first principles calculation of the electronic and structural properties of a chromium impurity in alumina host lattices and a subsequent calculation of the multiple structure using eigenvalues and eigenvectors derived from the first principles calculation. This investigation is relevant to clarify the behavior of the fluorescent optical transitions which are used as pressure sensor in diamond anvil experiments across the structural transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Forman, R. A., Piermarini, G. J., Barnett, J. D., and Block, S., Science 176, 284 (1972).Google Scholar
2. Bell, P. M., Mao, H.-K., and Goettel, K. A., Science 226, 542 (1984);Google Scholar
Bell, P. M., Xu, J. -A., Mao, H.-K., in Shock Waves in Condensed Matter, Gupta, Y. M., Ed. (Plenum, New York, 1984).Google Scholar
3. Mao, H.-K., Xu, J.-A., Bell, P. M., J. Geophys. Res. 91, 4637 (1986)Google Scholar
4. Xu, J.-A., Mao, H.-K., and Bell, P. M., Science 232, 1404 (1986).Google Scholar
5. Jephcoat, A. P., Hemley, R. J., Mao, H. K., Goettel, K. A., Physica B 150, 116 (1988).Google Scholar
6. Cynn, H., Isaak, D. G., Cohen, R. E., Nicol, M. F., and Anderson, O. L., Am. Miner. 75, 439 (1990);Google Scholar
Bukowinski, M. S. T., Chizmeshya, A., Wolf, G. H., and Zhanh, H., Mol. Eng. 6, 81 (1996);Google Scholar
Marton, F. C. and Cohen, R. E., Am. Miner. 79, 789 (1994).Google Scholar
7. Thomson, K. T., Wentzcovitch, R. M., and Bukowinski, M. S. T., Science 274, 1880 (1996).Google Scholar
8. Duan, W., Wentzcovitch, R. M., Thomson, K. T., Phys. Rev. B 57, 10363 (1998).Google Scholar
9. Funamori, N. and Jeanloz, R., Science 278, 1109 (1997).Google Scholar
10. Duan, W., Wentzcovitch, R. M., Paiva, G., Fazzio, A., Phys. Rev. Lett., in press (1998).Google Scholar
11. Fazzio, A., Caldas, M. J., and Zunger, A. Phys. Rev. B. 29, 5999 (1984); 30, 3430 (1984).Google Scholar
12. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1981);Google Scholar
Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
13. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
14. d'Amour, H., Schiferl, D., Denner, W., Schulz, H., and Holzapfel, W. B., J. Appl. Phys. 49, 4411 (1978).Google Scholar
15. Kizler, P., He, J., Clarke, D. R., and Kenway, P. R., J. Am. Cer. Soc. 79, 3 (1996).Google Scholar
16. Emura, S., Maeda, H., Kuroda, Y., and Murata, T., Jpn. Appl. Phys. 32, Suppl. 32–2, 734 (1993).Google Scholar
17. Moss, S. C. and Newnham, R. E., Z. Cristall. 120, 359 (1964).Google Scholar
18. Wyckoff, R. W. G., Crystal Structures, Vol. 2 (Interscience, New York, 1964).Google Scholar
19. Wentzcovitch, R. M., in Quantum Theory of Real Materials, edited by Chelikowsky, J. R. and Louie, S. G. (Kluwer Academic Publishers, Dordrecht, 1996), p. 113.Google Scholar
20. Duelos, S. J., Vohra, Y. K., and Ruoff, A. L., Phys. Rev. B 41, 5372 (1990).Google Scholar
21. Sugano, S., Tanabe, Y., and Kamimura, H., Multiplets of Transition Metal Ions in Crystals (Academic Press, New York, 1970).Google Scholar
22. Griffith, J. S., Theory of Transition Metal Ions (Cambridge University Press, Cambridge, 1961), p. 437.Google Scholar
23. Wentzcovitch, R. M., Richardson, S. L., and Cohen, M. L., Phys. Lett. 114A, 203 (1986).Google Scholar
24. Eggert, J. H., Goettel, K. A., and Silvera, I. F., Phys. Rev. B 40, 5724 (1989); 40, 5733 (1989);Google Scholar
Eggert, J. H., Moshary, F., Goettel, K. A., and Silvera, I., Phys. Rev. B 44, 7202 (1991).Google Scholar
25. Stephens, D. R. and Drickamer, H. G., J. Chem. Phys. 35, 427 (1961).Google Scholar
26. Forman, R. A., Weinstein, B. A., and Piermarini, G., in Spectroscopie des Éléments de Transition et des Éléments Lourds dans les Solids. Lyon, France, 1976 (Centre National de la Recherche Scientifique, Pairs, 1977). [Colloq. Int. C. N. R. S. 255, 51 (1976)].Google Scholar
27. Goto, T., Ahrens, T. J., and Rossman, G. R., Phys. Chem. Mineral. 4, 253 (1979).Google Scholar
28. Ma, D. P., Liu, Y. Y., Wang, D. C, Chen, J. R., J. Phys. Gond. Matter 7, 4883 (1995).Google Scholar
29. Kawai, N. and Mochizuki, S., Phys. Lett. 36A, 54 (1971).Google Scholar
30. Lewis, G. K. and Drickamer, H. G., J. Chem. Phys. 45, 224 (1966).Google Scholar