Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T17:19:13.107Z Has data issue: false hasContentIssue false

Room Temperature Strength and Fracture of FeAl And NiAl.

Published online by Cambridge University Press:  26 February 2011

P. Nagpal
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
I. Baker
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
F. Liu
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
P.R. Munroe
Affiliation:
Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
Get access

Abstract

The yield strengths (σy) of FeA1 and NiAl of various aluminum concentrations were measured as a function of grain size, d, and the results fitted to σyo+ kd−1/2. It was found that for NiAl the lattice resistance (σo) and Hall-Petch slope (k) have minima at the stoichiometric composition and increase with decreasing aluminum concentration, whereas for FeAl these parameters have maxima at the stoichiometric composition and decrease off this composition. In tension tests, iron-rich FeAl was shown to be ductile whereas the stoichiometric alloy is brittle. In contrast, stoichiometric NiAl shows ductility but off-stoichiometric compositions are brittle. The fracture modes of the FeAl and NiAl are predominantly intergranular at the stoichiometric compositions and become increasingly transgranular with decreasing aluminum concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Munroe, P.R. and Baker, I., J. Mat. Sci., 24, 4246 (1989).CrossRefGoogle Scholar
2. Nagpal, P., PhD Thesis, Dartmouth College.Google Scholar
3. Nagpal, P. and Baker, I, Met. Trans., 21A, 2281 (1990).CrossRefGoogle Scholar
4. Bradley, A.J. and Taylor, A., Phil. Mag., 23, 1049 (1937).Google Scholar
5. Baker, I., Nagpal, P., Liu, F. and Munroe, P. R., submitted to Acta Metall.Google Scholar
6 Hirth, J. P. and Cohen, M., Metall. Trans., 1, 3 (1970)Google Scholar
7. Westbrook, J.H., J. Electrochem. Soc., 103, 54 (1956).Google Scholar
8. Pascoe, R.T. and Newey, C.W.A., Met. Sci., 2, 138 (1968).Google Scholar
9. Causey, A. and Teghtsoonian, E., Met .Trans.A, 1A, 1177 (1970).CrossRefGoogle Scholar
10. Wood, D.L. and Westbrook, J.H., TMS AIME, 224, 1024 (1962).Google Scholar
11. Baker, I. and Munroe, P.R., Proc. Symp. High Temperature Aluminides and Intermetallics, TMS, ed. S.H. Whang, C.T. Liu, D.P. Pope and J.O. Stiegler, p. 425, 1990.Google Scholar
12. Mendiratta, M.G., Ehlers, S.K., Dimiduk, D.M., Kerr, W.R., Mazdiyasni, S. and Lipsitt, H.A., Proc. MRS, 81, 393 (1987).Google Scholar
13. Crimp, M.A., Vedula, K.M. and Gaydosh, D.J., Proc. MRS, 81, 499 (1987).Google Scholar
14. Morgund, P., Moururat, P. and Sainfort, G., Acta Metall., 16, 867 (1968).Google Scholar
15. Schmidt, B., Nagpal, P. and Baker, I., Proc. MRS, 133 (1989).Google Scholar
16. Ray, I.L.F., Crawford, R.C. and Cockayne, D.J.H., Phil. Mag., 21, 1027 (1970).Google Scholar
17. Crawford, R.C., Phil. Mag., 33, 529 (1976).Google Scholar
18. Marcinkowski, M.J. and Fisher, R.M., Trans. A.I.M.E., 233, 293 (1965).Google Scholar
19. Jordan, K.R. and Stoloff, N.S., Trans. A.I.M.E., 245, 2027 (1969).Google Scholar
20. Johnston, T.L., Davies, R.G. and Stoloff, N.S., Phil. Mag., 12, 305 (1965).Google Scholar
21. Causey, A., PhD Thesis, University of British Columbia, 1968.Google Scholar
22. Brindley, B. J. and Worthington, P. J., Met. Rev., 15, 101 (1970).CrossRefGoogle Scholar
23. Hutchinson, M. M. and Pascoe, R. T., J. Aust. Inst. Metals, 14, 306 (1969).Google Scholar
24. Higo, Y., Pikard, A.C. and Knott, J.F., Met. Sci., 15, 233 (1981).Google Scholar
25. Lasalmonie, A. and Strudel, J.L., J. Mat. Sci., 21, 1837 (1986).Google Scholar
26. Morrison, W. B. and Leslie, W. C., Metall. Trans., 4, 379 (1973).Google Scholar
27. Cottrell, A. H., Trams. TMS-AIME, 212, 192 (1958).Google Scholar
28. Wilson, D. V., Met. Sci., 1, 40 (1967).CrossRefGoogle Scholar
29. Baker, I., ASM Symp. “Structure/Property Relationship for Interface”, Detroit, 1990, in press.Google Scholar
30. Crimp, M. A. and Vedula, K. M., Mat. Sci. Eng., 78, 193 (1986).Google Scholar
31. Crimp, M. A., Vedula, K. M. and Gaydosh, D. J., Proc. MRS ., 81, 499 (1987).Google Scholar
32. Gaydosh, D. J., Draper, S. L. and Nathal, M. V., Met. Trans., 20A, 1701 (1989).Google Scholar
33. Gaydosh, D. J. and Nathal, M. V., Scripta Metall., 24, 1281 (1990).Google Scholar
34. Liu, C. T. and George, E. P., Scripta Metall., 24, 1285 (1990).Google Scholar
35. Hahn, K. H. and Vedula, K., Scripta Metall., 23, 7 (1989).Google Scholar
36. George, E. P. and Liu, C.T., J. Mater. Res., 5, 754 (1990).Google Scholar
37. Nagpal, P. and Baker, I., Scripta Metall., (1990) in press.Google Scholar
38. Barker, D., M. S. thesis, Dartmouth College (1982).Google Scholar
39. Cottrell, A. H., Mat. Sci. and Technology, 5, 1165 (1989).Google Scholar
40. Harmouche, M. R. and Wolfenden, A., J. Testing and Evaluation, 15, 101 (1987).Google Scholar
41. Mendiratta, M. G. and Law, C. C., J. Mat. Sci., 22, 607 (1987).Google Scholar
42. Munroe, P.R. and Baker, I., submitted to Acta Metall.Google Scholar
43. Rice, J. and Thompson, R., Philos. Mag., 29, 73 (1974).Google Scholar
44. Chen, S. P., Voter, A. F., Alberts, R. C., Boring, A. M., and Hay, P. J., J. Mater. Res., 5, 955, (1990).Google Scholar