Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T06:59:55.883Z Has data issue: false hasContentIssue false

Room Temperature Measurement of Photoluminescence Spectra of Semiconductors Using an Ft-Raman Spectrophotometer

Published online by Cambridge University Press:  22 February 2011

J. D. Webb
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
D. J. Dunlavy
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
T. Ciszek
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
R. K. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
M. W. Wanlass
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
R. Noufi
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401
S. M. Vernon
Affiliation:
Spire Corporation, Bedford, MA 01730
Get access

Abstract

This paper demonstrates the utility of a Fourier transform (FT) Raman spectrophotometer in obtaining the room-temperature photoluminescence (PL) spectra of semiconductors used in photovoltaic and electro-optical devices. Sample types analyzed by FT-PL spectroscopy included bulk silicon and films of copper indium diselenide (CuInSej), gallium indium arsenide (GaInAs), indium phosphide arsenide, (InPAs), and gallium arsenide-germanium alloy (GaAsGe) on various substrates. The FTIR-PL technique exhibits advantages in speed, sensitivity, and freedom from stray light over conventional dispersive methods, and can be used in some cases to characterize complete semiconductor devices as well as component materials at room temperature. Recent innovations that improve the spectral range of the technique and eliminate instrumental spectral artifacts are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gu, S. Q., Chen, D., Viner, J. M., Raikh, M. E., and Taylor, P. C., AIP Conference Proc. 268, Noufi, R. (Ed.), (American Institute of Physics, New York, 1992), pp. 363368.CrossRefGoogle Scholar
2. Purcell, F. J. and Kaminski, R., Proc. SPIE vol. 822 (The International Society for Optical Engineering, Bellingham, WA, 1987), pp. 188197.Google Scholar
3. Perez-Rodriguez, A., Cornet, A., Morante, J. R., Jimenez, J., Hemment, P. L. F., and Homewood, K. P., J. Appl. Phys. 70, (3), 1678 (1991).CrossRefGoogle Scholar
4. Yamada, A., Tanda, M., Manaka, S., Sano, H., Konagai, M., and Takahashi, K., Proc. 11th European Photovoltaic Solar Energy Conference (Commission of the European Communities, Montreux, Switzerland, 1992), in press.Google Scholar
5. Wagner, J., Physica Scripta, Vol. T29, Friedal, J., Laheurte, J. P., and Romagnan, J. P., eds., (European Physical Society, Sweden, 1989), pp. 167171.Google Scholar
6. Timmons, M. L., Colpitts, T. S., Venkatasubramanian, R., Keyes, B. M., Dunlavy, D. J., and Ahrenkiel, R. K., Appl. Phys. Lett. 40 (19), 1850 (1990).CrossRefGoogle Scholar
7. Ahrenkiel, R. K., Dunlavy, D. J., Keyes, B. M., Vernon, S. M., Tobin, S. P., and Dixon, T. M., Proc. 21st IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronic Engineers, New York, NY, 1990), pp. 432436.CrossRefGoogle Scholar
8. Griffiths, P. R. and Haseth, J. A. De, Fourier Transform Infrared Spectroscop (John Wiley & Sons, New York, NY, 1986).Google Scholar
9. Estrera, J. P., Duncan, W. M., Kao, Y. C., Liu, H. Y., Stevens, P. D., Beam, E. A. III, Proc. SPIE vol. 1678 (The International Society for Optical Engineering, Bellingham, WA, 1992), pp. 120130.Google Scholar
10. Ruani, G., Pal, A. J., Zamboni, R., and Taliani, C., Electronic Properties of High-T. Superconductors and Related Compounds (Springer-Verlag, Berlin, Germany, 1990), pp. 331335.CrossRefGoogle Scholar
11. Schrader, B., “Possibilities and Limitations of FT-Raman Spectroscopy,” in Practical Fourier Transform Infrared Spectroscopy, Chase, D. B. and Rabolt, J. F., Eds. (Academic Press, New York, 1990), Chap. 4.CrossRefGoogle Scholar
12. Webb, J. D., Dunlavy, D. J., Ciszek, T., Ahrenkiel, R. K., Wanlass, M. W., Noufi, R., and Vernon, S. M., Appl. Spectrosc. 47 (11), 1814 (1993).CrossRefGoogle Scholar
13. Auth, Gerald L., U.S. patent no. Re. 32,821 (3 January 1989).Google Scholar
14. Tajima, M., J. Crystal Growth 103, 1 (1990).CrossRefGoogle Scholar
15. Abou-Elfotouh, F., Dunlavy, D. J., Cahen, D., Noufi, R., Kazmerski, L. L., and Bachmann, K. J., Prog. Crystal Growth 10, 365 (1984).CrossRefGoogle Scholar
16. Blachnik, R., Dean, P. J., and Madelung, O., in Landolt-Bornstein Numerical Data and Fundamental Relationships in Science and Technology. Vol. 17, edited by Hellwege, K. H., (Springer-Verlag, Berlin, 1982), chapter 2.16.Google Scholar
17. Baird, R. J., J. Appl. Phys. 69 (1), 226 (1991).CrossRefGoogle Scholar
18. Pankove, J., Optical Processes in Semiconductors (Dover Publications, Inc., New York, 1975), pp. 249252.Google Scholar
19. Skoog, D. A. and West, D. M., Principles of Instrumental Analysis, 2nd ed. (Saunders College, Philadelphia, PA, 1980), p. 263.Google Scholar