Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T23:26:59.509Z Has data issue: false hasContentIssue false

Room Temperature Emission from Erbium Nanoparticles Embedded in a Silicon Matrix

Published online by Cambridge University Press:  15 February 2011

A. Thilderkvist
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
J. Michel
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
S.-T. Ngiam
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
L. C. Kimerling
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
K. D. Kolenbrander
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Strong room temperature photoluminescence emission from thin films of Er nanoparticles embedded in a matrix of silicon is reported. The Er nanoparticles were produced by a pulsed laser ablation supersonic expansion technique. After a heat treatment at 500°C in an Ar-atmosphere, intense Er-related luminescence appears at λ = 1.54 gim, characteristic of intra-4f emission from Er. Only a 50% reduction in photoluminescence intensity is observed as the temperature increases from 4 K to 300 K. A photocarrier mediated process is responsible for the excitation of the optically active Er-centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983)Google Scholar
2. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M., and Kimlerling, L. C., J. Appl. Phys. 70, 2672 (1991)Google Scholar
3. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64, 2842 (1994)Google Scholar
4. Lombardo, S., Campisano, S. U., vand den Hoven, G. N., Cacciato, A., and Polman, A., Appl. Phys. Lett. 63 (1993)Google Scholar
5. Namavar, F., Feng, L., Perry, C. H., Cremins, A., Kalkhoran, N. M., and Soref, R. A., J. Appl. Phys. 77, 4813 (1995)Google Scholar
6. Oestereich, T., Swiatkowski, C., and Broser, I., Appl. Phys. Lett. 56, 446 (1990)Google Scholar
7. Chiu, L. A., Seraphin, A. A., and Kolenbrander, K. D., J. Electronic Materials, 23, 347 (1994).Google Scholar
8. Davies, G., Physics Reports (Review section of Physics Letters), 176, 83 (1989)Google Scholar
9. O’Donnell, K. P., Lee, K. M., and Watkins, G. D., Physica B, 116, 258 (1983)Google Scholar
10. Trombetta, J. M., Watkins, G. D., Appl. Phys. Lett. 51, 1103 (1987)Google Scholar
11. Polman, A., Lidgard, A., Jacobson, D. C., Becker, P. C., Kistler, R. C., Blonder, G. E., and Poate, J. M., Appl. Phys Lett. 57, 2859 (1990)Google Scholar