Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T13:35:13.794Z Has data issue: false hasContentIssue false

Roll-to-Roll Graphene Synthesis by Using Microwave Plasma Chemical Vapor Deposition at Low Temperature

Published online by Cambridge University Press:  16 July 2012

Takatoshi Yamada
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Masatou Ishihara
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Jaeho Kim
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Masataka Hasegawa
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Sumio Iijima
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Get access

Abstract

We reported continuous depositions of grahene films on copper foils with A4 width using roll-to-toll microwave plasma chemical vapor deposition (MWPCVD) technique. A pair of winder and unwinder was built into an MWPCVD apparatus. Surface-wave plasma enabled us to deposit large-area graphene film (substrate stage is of 480 mm x 300 mm) at temperatures below 400 ºC. In Raman spectra, G- and G’-band attributed to graphene were obtained. In addition, Dand D’-band originated from defects and/or edges were detected. These results suggested that the obtained graphene films consisted of flake boundaries and defects. After the transferring graphene onto the polyethylene terephthalate film, uniform transmittance and sheet resistance were confirmed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S. and Kong, J., Nano Lett. 9, 30 (2009).Google Scholar
2. Yamaguchi, H., Eda, G., Mattevi, C., Kim, H. and Chhowlla, M., ASC Nano 4, 524 (2010).Google Scholar
3. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishan, J., Lei, T., Kim, H. R., Somg, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., , B, Hong, H. and Iijima, S., Nature Nanotechnol. 5, 574 (2011).Google Scholar
4. Kim, J., Ishihara, M., Koga, Y., Tsugawa, K., Hasegawa, M., Iijima, S., Appl. Phys. Lett. 98, 091502 (2011).Google Scholar
5. Tsugawa, K., Ishihara, M., Kim, J., Hasegawa, M., Koga, Y., New Diamond and Frontier Carbon Technology 16, 337 (2006).Google Scholar
6. Cancado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Paniago, R. M-. and Pimeta, M. A., Appl. Phys. Lett. 88, 163106 (2006).Google Scholar
7. Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M. P., Volodin, A. and Haesendock, C. V., Appl. Phys. Lett. 104, 084301 (2008).Google Scholar
8. Yamada, T., Ishihara, M., Kim, J., Hasegawa, M. and Iijima, S., Carbon 50 (2012) 2615.Google Scholar
9. Cai, W., Zhu, Y., Li, X., Piner, R. D. and Rouff, R. S., Appl. Phys. Lett. 95, 123115(2009).Google Scholar
10. Ishihara, M., Koga, Y., Kim, J., Tsugawa, K., Hasegawa, M. and Iijima, S., Mater. Lett. 65, 2864 (2011).Google Scholar