Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:25:16.925Z Has data issue: false hasContentIssue false

The Role of Unprecracked Hydride Species Adsorbed on The GaAs(100) in The Growth of GaAs by Ultrahigh Vacuum Chemical Vapor Deposition Using Trimethylgallium and Triethylgallium

Published online by Cambridge University Press:  22 February 2011

Seong-Ju Park
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon City, 305-606. Republic of, Korea
Jeong-Rae Ro
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon City, 305-606. Republic of, Korea
Jae-Ki Sim
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon City, 305-606. Republic of, Korea
Jeong Sook Ha
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon City, 305-606. Republic of, Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon City, 305-606. Republic of, Korea
Get access

Abstracts

We have grown GaAs epilayers by ultrahigh vacuum chemical vapor deposition(UHVCVD) using adsorbed hydrides and metalorganic compounds via a surface decomposition process. This result indicates that unprecracked arsine(AsH3) can be used in chemical beam epitaxy(CBE) and that a new hydride source with a low decomposition temperature, monoethylarsine(MEAs) can replace the precracked AsH3 source in CBE. The impurity concentrations in GaAs grown with trimethylgallium(TMG) and triethylgallium(TEG) were found to be very sensitve to growth temperature. It was also found that the uptake of carbon impurity is significantly reduced when TMG is replaced with TEG. The carbon concentrations in epilayers grown using TMG and TEG with unprecracked AsH3 and MEAs were reduced by 2-3 orders of magnitude compared to those by CBE process employing TMG and arsenics from precracked hydrides. We have also found that the hydrogen atoms play an important role in the reduction of carbon content in GaAs epilayer. Intermediates like dihydrides from MEAs decomposed on the surface are considered to supply hydrogen atoms and hydrides during growth, which may remove other carbon containing species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Veuhoff, E., Pletschen, W., Balk, P., and Liith, H., J. Cryst. Growth 55, 30(1981).Google Scholar
2. Piutz, N., Veuhoff, E., Heineke, H., Heyen, M., Lüith, H., and Balk, P., J. Vac. Sci. Technol. B3, 671(1985).Google Scholar
3. PUtz, N., Heineke, H., Heyen, M., Balk, P., Weyers, M., and Liith, H., J. Cryst. Growth 74, 292(1986).Google Scholar
4. Smith, F. T. J., Prog. Solid State Chem. 55, 111(1989).CrossRefGoogle Scholar
5. Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750(1989).CrossRefGoogle Scholar
6. Speckman, D. M. and J.Wendt, P., J. Crystal Growth 105, 275(1990): D.M. Speckman and J. P. Wendt, Appl. Phys. Lett. 56, 1134(1990).Google Scholar
7. Musolf, J., Weyers, M., Balk, P., Zimmer, M., and Hofmann, H., J. Cryst. Growth 105, 271(1990).Google Scholar
8. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., Mat. Res. Soc. Symp. Proc. 281, 37(1993).CrossRefGoogle Scholar
9. Isu, T., Hata, M. and Watanabe, A., J. Cryst. Growth 105, 209(1990).Google Scholar
10. Lee, B.J., Houng, Y. M., and Miller, J. N., J. Cryst. Growth 105, 168(1990); J.L. Benchimol, X.Q. Zhang, Y. Gao, G. Le Roux, H, Thibierge, and F. Alexandre, J. Cryst. Growth 120, 189(1992).CrossRefGoogle Scholar
11. Abernathy, C.R., Pearton, S.J., Ren, F., Hobson, W.S., Fullowan, T.R., Katz, A., Jordan, A.S., and Kovalchik, J., J. Cryst. Growth 105, 375(1990).CrossRefGoogle Scholar
12. Konagai, M., Yamada, T., Akatsuka, T., Nozaki, S., Miyake, R., Saito, K., Fukamachi, T., Tokumitsu, E., and Takahashi, K., J. Cryst. Growth 105, 359(1990).Google Scholar
13. Creighton, J. R., Bansenauer, B. A., Huett, T., and White, J. M., J. Vac. Sci. Technol. A11, 876(1993).Google Scholar
14. Zhu, X. -Y., Wolf, M., and White, J. M., J. Chem. Phys. 97, 605(1992).CrossRefGoogle Scholar
15. Reep, D. H. and Ghandhi, S. K., J. Electrochem. Soc. 130, 675(1983).CrossRefGoogle Scholar
16. Larsen, C. A., Li, S. H., Buchan, N. I., Stringfellow, G. B., and Brown, D. W., J. Cryst. Growth 102, 126(1990).CrossRefGoogle Scholar
17. Memmert, U. and Yu, M L., Appl. Phys. Lett. 56, 1883(1990).CrossRefGoogle Scholar
18. Squire, D. W., Dulcey, C. S., and Lin, M. C., Mat. Res. Soc. Symp. Proc. 101, 301(1988).CrossRefGoogle Scholar
19. Robertson, A., Jr., Chiu, T. H., Tsang, W. T., and Cunningham, J. E., J. Appl. Phys. 64, 877(1988).Google Scholar
20. Liang, B. W., Chin, T. P., and Tu, C. W., J. Appl. Phys. 67, 4393(1990).Google Scholar