Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T14:26:56.605Z Has data issue: false hasContentIssue false

The Role of SiH3 Diffusion in Determining the Surface Smoothness of Plasma-Deposited Amorphous Si Thin Films: An Atomic-Scale Analysis

Published online by Cambridge University Press:  01 February 2011

Mayur S. Valipa
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5080, U. S. A.
Tamas Bakos
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003-3110, U. S. A.
Eray S. Aydil
Affiliation:
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106-5080, U. S. A.
Dimitrios Maroudas
Affiliation:
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003-3110, U. S. A.
Get access

Abstract

Device-quality hydrogenated amorphous silicon (a-Si:H) thin films grown under conditions where the SiH3 radical is the dominant deposition precursor are remarkably smooth, as the SiH3 radical is very mobile and fills surface valleys during its diffusion on the a-Si:H surface. In this paper, we analyze atomic-scale mechanisms of SiH3 diffusion on a-Si:H surfaces based on molecular-dynamics simulations of SiH3 radical impingement on surfaces of a-Si:H films. The computed average activation barrier for radical diffusion on a-Si:H is 0.16 eV. This low barrier is due to the weak adsorption of the radical onto the a-Si:H surface and its migration predominantly through overcoordination defects; this is consistent with our density functional theory calculations on crystalline Si surfaces. The diffusing SiH3 radical incorporates preferentially into valleys on the a-Si:H surface when it transfers an H atom and forms a Si-Si backbond, even in the absence of dangling bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shah, A., Torres, P., Tscharner, R., Wyrsch, N., and Keppner, H., Science 285, 692 (1999).10.1126/science.285.5428.692Google Scholar
[2] Beneking, C., Rech, B., Foelsch, J., and Wagner, H., Phys. Status Solidi B 194, 41 (1996).10.1002/pssb.2221940106Google Scholar
[3] Kessels, W. M. M., Sanden, M. C. M. van de, and Schram, D. C., J. Vac. Sci. Technol. A 18, 2153 (2000).10.1116/1.1289541Google Scholar
[4] Robertson, R. and Gallagher, A., J. Appl. Phys. 59, 3402 (1986).10.1063/1.336806Google Scholar
[5] Doughty, D. A., Doyle, J. R., Lin, G. H., and Gallagher, A., J. Appl. Phys. 67, 6220 (1990).10.1063/1.345188Google Scholar
[6] Ramalingam, S., Sriraman, S., Aydil, E. S., and Maroudas, D., Appl. Phys. Lett. 78, 2685 (2001).10.1063/1.1367298Google Scholar
[7] Valipa, M. S., Sriraman, S., Aydil, E. S., and Maroudas, D., Surf. Sci. 574, 123 (2005).10.1016/j.susc.2004.10.039Google Scholar
[8] Yamasaki, S., Das, U. K., Umeda, T., Isoya, J., and Tanaka, K., J. Non-Cryst. Solids 266-269, 529 (2000).10.1016/S0022-3093(99)00843-1Google Scholar
[9] Shimizu, T., Xu, X., Kidoh, H., Morimoto, A., and Kumeda, M., J. Appl. Phys. 64, 5045 (1988).10.1063/1.342458Google Scholar
[10] Valipa, M. S., Aydil, E. S., and Maroudas, D., Surf. Sci. 572, L339 (2004).10.1016/j.susc.2004.08.029Google Scholar
[11] Maroudas, D., Adv. Chem. Eng. 28, 251 (2001), and references therein.10.1016/S0065-2377(01)28008-9Google Scholar
[12] Ohira, T., Ukai, O., Adachi, T., Takeuchi, Y., and Murata, M., Phys. Rev. B 52, 8283 (1995).10.1103/PhysRevB.52.8283Google Scholar
[13] Ohira, T., Ukai, O., Noda, M., Takeuchi, Y., Murata, M., Yoshida, H., Mater. Res. Soc. Symp. Proc. 408, 445 (1996).10.1557/PROC-408-445Google Scholar
[14] Ramalingam, S., Maroudas, D., and Aydil, E. S., J. Appl. Phys. 84, 3895 (1998).10.1063/1.368569Google Scholar
[15] Rahman, A., Phys. Rev. 136, A405 (1964).10.1103/PhysRev.136.A405Google Scholar
[16] Bray, K. R. and Parsons, G. N., Phys. Rev. B 65, 035311 (2001).10.1103/PhysRevB.65.035311Google Scholar
[17] Gleason, K. K., Wang, K. S., Chen, M. K., and Reimer, J. A., J. Appl. Phys. 61, 2866 (1987).10.1063/1.337882Google Scholar
[18] Maeda, K., Kuroe, A., and Umezu, I., Phys. Rev. B 51, 10635 (1995).10.1103/PhysRevB.51.10635Google Scholar
[19] Bakos, T., Valipa, M. S., and Maroudas, D., J. Chem. Phys. 122, 054703 (2005).10.1063/1.1839556Google Scholar
[20] Smets, A. H. M., Kessels, W. M. M., and Sanden, M. C. M. van de, Appl. Phys. Lett. 82, 865 (2003).10.1063/1.1543237Google Scholar