Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T15:38:32.763Z Has data issue: false hasContentIssue false

Role of n-Type Codopants on Enhancing p-Type Dopants Incorporation in p-Type Codoped Znse

Published online by Cambridge University Press:  10 February 2011

T. Yamamoto
Affiliation:
Department of Computational Science, Asahi Chemical Industry Co., Ltd., 2-1 Samejima, Fuji 416, Japan, yamateko@cs.fuji.asahi-kasei.co.jp Department of Condensed Matter Physics, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567, Japan
H. Katayama-Yoshida
Affiliation:
Department of Computational Science, Asahi Chemical Industry Co., Ltd., 2-1 Samejima, Fuji 416, Japan, yamateko@cs.fuji.asahi-kasei.co.jp PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332, Japan
Get access

Abstract

We propose materials design for the fabrication of low-resistivity p-type ZnSe crystals using a new doping method which involves simultaneous codoping of both n- and p-type dopants, based on the ab initio electronic band structure calculations. We have clarified that while doping of acceptor dopants, Lizn and Nse, leads to the destabilization of the ionic charge distributions in p-type ZnSe crystals, doping of donor dopants, Inzn, ClSe or ISe gives rise to n-type doped ZnSe with high donor concentration due to a large decrease in the Madelung energy. The codoping of the n- and p-type dopants (the ratio of their concentrations is 1:2) enhances the incorporation of the acceptors in p-type ZnSe crystals due to a decrease in the Madelung energy, resulting in the formation of the p-n-p complexes which occupy nearest-neighbor sites. It results in an increase in the net carrier densities and the hole mobility due to a change in the scattering mechanism from that caused by long-range Coulomb scatters to that by short-range dipole-like ones

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamamoto, T. and Katayama-Yoshida, H. in Electronic structure of p-type CuInS2 , edited by Ginley, D., Catalano, A., Schock, H. W., Eberspacher, C., Peterson, T. M. and Wada, T. (Mater. Res. Soc. Proc. 426, Pittsburgh, Pennsylvania 1996), p. 201206.Google Scholar
2. Yamamoto, T. and Katayama-Yoshida, H., Solar Energy and Solar Cells, 49, 391 (1997).Google Scholar
3. Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 36, L180 (1997).Google Scholar
4. Yamamoto, T. and Katayama-Yoshida, H. in Control of valence states by a codoping method in p-type GaN materials, edited by Abernathy, C. R., Amano, H., Zolper, J. C. (Mater. Res. Soc. Proc. 468, Pittsburgh, Pennsylvania 1997), p. 105110.Google Scholar
5. Yamamoto, T. and Katayama-Yoshida, H., Proc. the 2nd Int. Conf. Nitride Semiconductors, Tokushima, Japan, Oct. 27-31, 1997, p. 272 and to be published in J. Cryst. Growth.Google Scholar
6. Katayama-Yoshida, H. and Yamamoto, T., Phys. Status Solidi (b) 202, 763 (1997).Google Scholar
7. Brandt, O., Yang, H., Kostial, H. and Ploog, K. H., Appl. Phys. Lett. 69, 2707 (1996).Google Scholar
8. Yasuda, T., Mitsuishi, I. and Kukimoto, H., Appl. Phys. Lett. 52, 57 (1988).Google Scholar
9. Parl, R. M., Troffer, M. B., Roluleau, C. M., DePuydt, J. M. and Hasse, M. A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
10. Qiu, J., DePuydt, J. M., Cheng, H. and Hasse, M. A., Appl. Phys. Lett. 59, 2992 (1991).Google Scholar
11. Ohkawa, K., Tsujimura, A., Hayashi, S., Yoshi, S. and Mitsuyu, T., Ext. Abstr. 1992 Int. Conf. Solid State Devices and Materials, Tsukuba, 1992, p. 330.Google Scholar
12. Jung, H. D., Song, C. D., Wang, S. Q., Arai, K., Wu, Y. H., Zhu, Z., Yao, T. and Katayama-Yoshida, H., Appl. Phys. Lett. 70, 1143 (1997).Google Scholar
13. Chadi, D. J. and Chang, K. J., Appl. Phys. Lett. 55, 575 (1989).Google Scholar
14. Sasaki, T., Oguchi, T. and Katayama-Yoshida, H., Phys. Rev. B43, 9362 (1991).Google Scholar
15. Laks, D. B. and Van de Walle, C. G., Physica B185, 118 (1993).Google Scholar
16. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
17. Hedin, L. and Lundquist, B. I., J. Phys. C4, 3107 (1971).Google Scholar
18. von Barth, U. and Hedin, L., J. Phys. C5, 1629 (1972).Google Scholar
19. Williams, A. R., Kuebler, J. and Gelatt, C. D., Phys. Rev. B19, 6094 (1979).Google Scholar