Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T14:06:21.326Z Has data issue: false hasContentIssue false

Role of Nanopipes in Degradation of AlGaN/InGaN/GaN Devices Operating at High Voltage

Published online by Cambridge University Press:  10 February 2011

Marek Osiński
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106, osinski@chtm.unm.edu
Jinhyun Lee
Affiliation:
Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106, osinski@chtm.unm.edu
Daniel L. Barton
Affiliation:
Also with Sandia National Laboratories, Albuquerque, New Mexico 87185-1081, bartondl@sandia.gov
Get access

Abstract

We argue that the nanopipes recently observed in device-quality GaN grown on sapphire play an important role in degradation of nitride-based devices requiring high driving voltage, such as diode lasers or high-power electronics. The nanopipes offer a preferential path for the top (p-side) contact metal to migrate down towards the p-n junction under high-voltage operation, eventually causing a short and device failure. The metal migration process is enhanced by high voltage (tens of volts) required to drive high-current pulses through the device, and its elimination is of critical importance for achieving reliable GaN-based power devices and diode lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Postdeadline Papers, IEEE LEOS 9th Annual Meeting Boston, MA, 1821 Nov. 1996, Paper PD1.1.Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S.–I., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys., Pt. 2 (Lett.) 36. (8B), pp. L1059–L1061 (1997).Google Scholar
3. Taniguchi, S., Hino, T., Itoh, S., Nakayama, K., Ishibashi, A., and Ikeda, M., Electron. Lett. 32, 552 (1996).Google Scholar
4. Barton, D. L., Osiriski, M., Perlin, P., Helms, C. J., and Berg, N. H., in Light-Emitting Diodes: Research, Manufacturing, and Applications II, edited by Schubert, E. F., San Jose, CA, 28–29 Jan. 1998, (SPIE Proc. 3279, Bellingham, WA 1998), pp. 1727.Google Scholar
5. Barton, D. L., Zeller, J., Phillips, B. S., Chiu, P.-C., Askar, S., Lee, D.–S., Osiński, M., and Malloy, K. J., Proc. 33rd Annual IEEE International Reliability Physics Symp., Las Vegas, NV, 4–6 April 1995, Paper 3B.3, pp. 191199.Google Scholar
6. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64 (13), pp. 16871689 (1994); S.Nakamura, J. Cryst. Growth 145, pp. 911–917 (1994); S.Nakamura, J. Vac. Sci. & Technol. A13, 705 (1995).Google Scholar
7. Osiński, M., Perlin, P., Eliseev, P. G., Liu, G., and Barton, D. L., in I1I-V Nitrides, edited by F. A. Ponce, T. D. Moustakas, I. Akasaki, and B. A. Monemar, Boston, MA, 2–6 Dec., 1996 (Mater. Res. Soc. Symp. Proc. 449, Pittsburgh, PA 1997), pp. 11791184.Google Scholar
8. Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66 (10), pp. 12491251 (1995).Google Scholar
9. Mack, M. P., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U. K., Coldren, L., and DenBaars, S., MRS Internet J. Nitride Semicond. Res. 2, Art. 41, (1997).Google Scholar
10. Ponce, F. A., Cherns, D., Young, W. T., Steeds, J. W., and Nakamura, S., in III-V Nitrides, edited by F. A. Ponce, T. D. Moustakas, I. Akasaki, and B. A. Monemar, Boston, MA, 2–6 Dec., 1996 (Mater. Res. Soc. Symp. Proc. 449, Pittsburgh, PA 1997), pp. 405–410.Google Scholar