Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T08:02:13.290Z Has data issue: false hasContentIssue false

The Role of Core Levels in Scintillation Processes

Published online by Cambridge University Press:  21 February 2011

Andrey N. Belsky
Affiliation:
Synchrotron Radiation Laboratory, Physics Department, Moscow State University, Moscow, 117234, Russia
Irina A. Kamenskikh
Affiliation:
Synchrotron Radiation Laboratory, Physics Department, Moscow State University, Moscow, 117234, Russia
Andrey N. Vasil'ev
Affiliation:
Synchrotron Radiation Laboratory, Physics Department, Moscow State University, Moscow, 117234, Russia
Alexander V. Gektin
Affiliation:
Institute for Single Crystals, Kharkov, Ukraine
Christian Pedrini
Affiliation:
Laboratoire de Physico-Chimie des Materiaux Luminescents, University Lyon I, Batiment 205, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Patrick Martin
Affiliation:
Laboratoire pour rUtilisation du Rayonnement Electromagnetique, CNRS, Batiment 209D, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

The Auger decay of a core hole results in appearance of several strongly correlated excitations. This excited region strongly polarizes the lattice and thus the defect creation is possible. In all cases the core hole causes the strong local perturbation of electronic and lattice subsystems. The creation of such excited region with mutual relaxation of correlated electrons and holes can result in the increase of the efficiency of energy transfer to activators, acceleration of the luminescence kinetics, and the appearance of radiation-induced luminescence centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Belsky, A.N., Kamenskikh, I.A., Mikhailin, V.V., Spinkov, I.N. and Vasil'ev, A.N., Physica Scripta 41, 530 (1990).Google Scholar
[2] Vasil'ev, A.N., Mikhailin, V.V. andOvchinnikova, I.V., Bull. of the Acad. of Sciences of the USSR, Physical Series 49, 164 (1985).Google Scholar
[3] Yu.M.Aleksandrov,Makhov, V.N., Rodnyi, P.A., Syreishchikova, T.I. andYakimenko, M.N., Sov. Phys. Solid State 26, 1734 (1984).Google Scholar
[4]Kubota, S., Itoh, M., Ruan(Gen), J., Sakuragi, S. andHashimoto, S., Phys. Rev. Lett. 60, 2319 (1988).Google Scholar
[5]Belsky, A., Kamenskikh, I., Mikhailin, V., Vasilev, A., Munro, I., Shaw, D., andShiran, N., to be published.Google Scholar
[6]Gavrilov, V.V., Gektin, A.V., Shiran, N.V., andCharkina, T.A., Sov. Opt. Spectrosc. 66, 961 (1987).Google Scholar
[7]Belsky, A.N., Vasil'ev, A.N., Mikhailin, V.V., Gektin, A.V., Shiran, N.V., Rogalev, A.L., andZinin, E.I., Rev. Sci. Instrum. 63, 806 (1992).Google Scholar
[8]Belsky, A.N., Vasil'ev, A.N., Mikhailin, V.V., Gektin, A.V., Martin, P., Pedrini, C., Bottet, D., Phys. Rev. B, to be published.Google Scholar
[9]Belsky, A.N., Mikhailin, V.V., Rogalev, A.L., andZinin, E.I., in 1994 MRS Spring Meeting, P2.8.Google Scholar