Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-07T08:29:20.492Z Has data issue: false hasContentIssue false

The Role of Carbon and Point Defects in Silicon

Published online by Cambridge University Press:  28 February 2011

U. Gösele*
Affiliation:
Department of Mechanical Engineering and Materials Science School of Engineering, Duke University, Durham, NC 27706
Get access

Abstract

An overview of the behavior of intrinsic point defects in silicon and their interaction with carbon is given for temperatures above about 500° C. The diffusive mechanism of carbon in silicon, which involves silicon self-interstitials, is treated in some detail and compared with the diffusion mechanism of oxygen. The solubility of interstitial carbon is estimated. Co-precipitation of carbon and self-interstitials or oxygen are dealt with in terms of simple volume considerations. It is proposed that the contradicting results on the influence of intrinsic point defect supersaturations on oxygen nucleation and precipitation may possibly be explained in the frame-work of opposite effects depending on the carbon concentration. Finally the influence of carbon on the incorporation and diffusion of gold in silicon is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gosele, U. and Ast, D.G. “Carbon, Oxygen and their Interactions with Intrinsic Point Defects in Silicon Ribbon Material-A Speculative Approach,” JPL-Report (1984).Google Scholar
2. Kolbesen, B.O. and Muhlbauer, A., Solid-State Electronics 25, 759 (1982).CrossRefGoogle Scholar
3. Kolbesen, B.O., in: Aggregation Phenomena of Point Defects in Silicon, Sirtl, E., Goorissen, J., and Wagner, P., eds. (The Electronchem. Soc., Pennington, 1983) p. 155.Google Scholar
4. Fair, R.B., in: Proc. 13th Int. Conf. Defects in Semiconductors, Kimerling, L.C. and Parsey, J.M., eds. (The Metallurgical Soc., Warrendale, 1985) p. 173.Google Scholar
5. Tan, T.Y. and Gosele, U., Appl. Phys. A37, 1 (1985).Google Scholar
6. Antoniadis, D.A., in: VLSI Electronics (Microstructure Science) Vol.12, Einspruch, N.G. and Huff, H.R., eds. (Academic Press, New York, 1985) and references there in.Google Scholar
7. Seeger, A. and Chik, K.P., Phys. Stat. Sol. 29, 455 (1968).Google Scholar
8. Stolwijk, N.A., Schuster, B., and Holzl, J., Appl. Phys. A 33, 133 (1984).Google Scholar
9. Gosele, U. and Tan, T.Y., in: Defects in Semiconductors II, Corbett, J.W. and Mahajan, S., eds. (North-Holland, New York, 1983) p.45.Google Scholar
10. Taniguchi, K., Antoniadis, D.A., and Matsushita, Y., Appl. Phys. Lett. 42, 961 (1983).CrossRefGoogle Scholar
11. Fronner, G.B. and Plummer, J.D., Stanford Rep. TROXG501–84, 1984.Google Scholar
12. Griffin, P.B., Gahey, P.M., Plummer, J.D., and Dutton, R.W., Appl. Phys. Lett. 47, 319 (1985).CrossRefGoogle Scholar
13. Gosele, U. and Tan, T.Y., in: Impurity Diffusion and Getting in Silicon, Fair, R.B., Pearce, Ch.W., and Washburn, J. eds, (Meterials Research Soc., Pittsburg, 1985) P. 105.Google Scholar
14. Hu, S.M., J. Appl. Phys. 57, 1069 (1985).Google Scholar
15. Tan, T.Y., these proceedings.Google Scholar
16. Hu, S.M., J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
17. Fahey, P., Dutton, R.W., and Moslehi, M., Appl. Phys. Lett. 43, 683 (1983).Google Scholar
18. Baker, J.A., Tucker, T.N., Moyer, N.E., and Busher, R.C., J. Appl. Phys. 39, 4365 (1968).CrossRefGoogle Scholar
19. Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids 32, 1211 (1971).Google Scholar
20. Zulehner, H.W., in ref. [3], p. 89.Google Scholar
21. Newman, R.C. and Wakefield, J., in: Metallurgy of Semiconductor Materials, Vol.15, Schroeder, J.B., ed. (Interscience, New York, 1961) p. 201, J. Phys. Chem. Solids 19, 230 (1961).Google Scholar
22. Takano, Y. and Malei, M., in: Semiconductor Silicon 1973, Huff, H.R. and Burgess, R.B., eds. (The Electrochem. Soc., Princeton, 1973) p. 469.Google Scholar
23. Kalejs, J.P., Ladd, L.A., and Gosele, U., Appl. Phys. Lett. 45, 268 (1984).CrossRefGoogle Scholar
24. Ladd, L.A., Kalejs, J.P., and Gosele, U., in: ref [13], p. 89.Google Scholar
25. Gosele, U. and Tan, T.Y., in ref. [3] p. 17.Google Scholar
26. Watkins, G.C. and Brower, K.L., Phys. Rev. Lett. 36, 1329 (1976).CrossRefGoogle Scholar
27. Frank, W., Gosele, U., Mehrer, H., and Seeger, A., in: Diffusion in Crystalline Solids, Murch, G.E. and Norwich, A.S., eds. (Academic Press, New York, 1984) p. 63.CrossRefGoogle Scholar
28. Lee, S.-Tong and Nichols, D., Appl. Phys. Lett. 47, 1001 (1985).CrossRefGoogle Scholar
29. Heck, D., Tressler, R.E., and Monkowski, J., J. Appl. Phys. 54, 5739 (1983).Google Scholar
30. For references see: Bergholz, W., Hutchinson, J.L., and Pirouz, P., JJ. Appl. Phys. 58m 3419 (1985).Google Scholar
31. For references, see Bourret, A., Thibault-Desseaux, J., and Seidman, D.N., J. Appl. Phys. 55m, 825 (1984).Google Scholar
32. Patel, J.R., in: Semiconductor Silicon 1977, Huff, H.R. and Sirtl, E., eds. (The Electrochem. Soc., Princeton,1977) p. 521.Google Scholar
33. Gosele, U. and Tan, T.Y., Appl Phys. A 28, 79 (1982).Google Scholar
34. Mahajan, S., Rozgonyi, G.A., and Brazen, D., Appl. Phys. Lett. 30, 73 (1977).CrossRefGoogle Scholar
35. Bourret, A., in ref [4], p. 129.Google Scholar
36. For references see ref. [5].Google Scholar
37. Foll, H., Gosele, U., and Kolbesen, B.O., J. Cryst. Growth 40, 90 (1977); 52, 907 (1981); in ref. [32], p. 565.Google Scholar
38. Schaake, H.F., Baber, J.C., and Pinizetto, R.F., in: Semiconductor Silicon 1981, Huff, H.R., Kriegler, R.J., and Takeishi, Y., eds. (The Electrochem. Soc., Pennington, 1981) p. 273.Google Scholar
39. Abe, T., Kikachi, U., Shirai, S., and Muraoka, S., in ref. [38], p. 60.Google Scholar
40. Newman, R.C. and Wakefield, T., J. Phys. Chem. Solids 19 230 (1961).Google Scholar
41. Lerouille, J., phys. stat. sol. (a) 67, 177 (1981); 7–4, K159 (1982).Google Scholar
42. Kishino, J., Kanamori, M., Yoshihiro, N., Tajima, M., and Tizulea, T., J. Appl. Phys. 50, 8240 (1979).Google Scholar
43. Shimura, F., Tsuya, H., and Kawamura, T., Appl. Phys. Lett. 37, 483 (1980).Google Scholar
44. Pinizetto, R.F. and Schaake, H. F., in: Defects in Semiconductors, Narajan, J. and Tan, T.Y., eds. (North-Holland, New York, 1981), p. 387.Google Scholar
45. Oehrlein, G.S., Challou, D.J., Jaworowski, A.E., and Corbett, J.W., Phys. Lett. 86A, 117 (1981).Google Scholar
46. Oehrlein, G.S., Lindstrom, T.L., and Corbett, J.W., Appl. Phys. Lett. 40, 241 (1982).CrossRefGoogle Scholar
47. Shimura, F., Baiardo, J.P., and Fraundorf, P., Appl. Phys. Lett. 46, 941 (1985).Google Scholar
48. Fraundorf, P., Fraundorf, G.K., and Shimura, F., J. Appl. Phys. (in press).Google Scholar
49. Tsai, H.L., J. Appl. Phys: 58, 3375 (1985).CrossRefGoogle Scholar
50. Ogino, M., Appl. Phys. Lett. 41, 847 (1982).Google Scholar
51. Kung, C.Y., Forbes, L., and Peng, J.D., Mat. Res. Bull. 18, 1437 (1983).CrossRefGoogle Scholar
52. Bender, H., Claeys, C., Van Landujt, J., Declerck, G., Amelinckx, S., and Van Overstraeten, R., in ref [4], p. 115.Google Scholar
53. Yasutake, K., Umeno, M., and Kawabe, H., phys. stat. sol. (a) 83, 207 (1984).Google Scholar
54. Hu, S.M., Appl. Phys. Lett. 36, 561 (1980).CrossRefGoogle Scholar
55. Schmalz, K. and Gaworzewski, P., phys. stat. sol. (a). 78, K141 (1983).Google Scholar
56. Craven, R.A., in ref. [38], p. 254.Google Scholar
57. de Kock, A.J.R., in ref. [3], p. 58.Google Scholar
58. Fair, R.B. and Carim, A., J. Electrochem. Soc. 129, 2319 (1982).Google Scholar
59. Peibst, H. and Raidt, H., Phys. Stat. sol. (a) 68, 253 (1981).Google Scholar
60. Wang, P., Chang, L., Demer, L.J., and Varker, C.J., J. Electrochem. Soc. 131, 1949 (1984).Google Scholar
61. Hartzell, R.A., Schaake, H.T., and Massey, R.G., in ref. [13], p. 217.Google Scholar
62. Tan, T.Y. and Kung, C.Y., J. Appl. Phys. (in press).Google Scholar
63. Tan, T.Y., these proceedings.Google Scholar
64. Bailey, W.E., Bowling, R.A., and Bean, K.E., J. Electrochem. Soc, 132, 1721 (1985).Google Scholar
65. Holzlein, K., Pensl, G., and Schulz, M., Appl. Phys. A 34, 155 (1984).Google Scholar
66. Wald, F.V., in: Crystals, Growth Properties and Applications, Grabmaier, J., ed. (Springer, Beslin, 1981) p. 147 Synergy, T 3, 1 (1985).Google Scholar
67. Ho, C.T. and Wald, F.V., phys. stat. sol. (a) 67, 103 (1985).Google Scholar
68. Rao, C. V. H. N. Cretella, M.C., Wald, F.V., and Ravi, K.V., J. Cryst. GrowthGoogle Scholar
69. Kalejs, T.P. and Ladd, L.A., Appl Phys. Lett. 45, 540 (1984).Google Scholar
70. Helmreich, K. and Sirtl, E., in ref [32], p. 626.Google Scholar
71. Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids 33, 255 (1972).CrossRefGoogle Scholar
72. Minaev, N.S. and Mudryi, A.V., phys. stat. sol. (a) 68, 561 (1981).Google Scholar
73. Hill, M.J. and Van Isegam, P.M., in ref. [32], p. 71–5.Google Scholar
74. Hauber, J., Diploma-Thesis, University of Stutgart, 1983.Google Scholar
75. Scheid, E. and Chenevier, P., Rev. Phys. Applique 20, 483 (1985).Google Scholar
76. Graff, K. and Hilgarth, J., in ref. [32], p. 575.Google Scholar