Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:00:29.035Z Has data issue: false hasContentIssue false

Rhombohedral-Orthorhombic Phase Transition Induced Enhancement on the Electrical Behavior of (K0.5Na0.5)NbO3-BiScO3-BiCoO3 Lead-free Piezoelectric Ceramics

Published online by Cambridge University Press:  13 June 2012

Wenjuan Wu
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Dingquan Xiao
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Jiagang Wu
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Jing Li
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Wenfeng Liang
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Jianguo Zhu
Affiliation:
Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
Get access

Abstract

(1-x)K0.5Na0.5NbO3-x(0.97BiScO3-0.03BiCoO3) (KNN-xBSC) piezoelectric ceramics were prepared by the conventional solid-state method, and effects of the BSC addition on the phase structure, relaxor behavior, and electrical properties of KNN ceramics were systematically investigated. The rhombohedral to orthorhombic phase transition around room temperature was identified for the KNN-xBSC ceramics in the composition range of 0.015≤ x ≤0.0175, and improved electrical properties (d33∼205 pC/N, kp∼0.43, εr∼1315, and tan δ∼0.054) were observed for the ceramic with x=0.015 because of the involvement of such a phase transition at room temperature. Moreover, a relaxor ferroelectric behavior is demonstrated for these KNN-xBSC ceramics because of a more complex occupation of A and B sites in the ABO3 perovskite structure, together with a weak ferromagnetic order at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. and Nakamura, M., Nature 432, 84 (2004).Google Scholar
2. Jaffe, B., Cook, W. R. and Jaffe, H., “Piezoelectric Ceramics,” (Academic, New York, 1971) pp. 115.Google Scholar
3. Egerton, L. and Dillon, D. M., J. Am. Ceram. Soc. 42, 438 (1959).Google Scholar
4. Zhang, S. J., Xia, R., Shrout, T. R., Zang, G. Z. and Wang, J. F., J. Appl. Phys. 100, 104108 (2006).Google Scholar
5. Wu, J. G., Wang, Y. Y., Xiao, D. Q., Zhu, J. G. and Pu, Z. H., Appl. Phys. Lett. 91, 132914 (2007).Google Scholar
6. Zhang, J. L., Zong, X. J., Wu, L., Gao, Y., Zheng, P. and Shao, S. F., Appl. Phys. Lett. 95, 022909 (2009).Google Scholar
7. Guo, Y. P., Kakimoto, K. and Ohsato, H., Appl. Phys. Lett. 85, 4121 (2004).Google Scholar
8. Wu, J. G., Xiao, D. Q., Wang, Y. Y., Zhu, J. G., Wu, L. and Jiang, Y. H., Appl. Phys. Lett. 91, 252907 (2007).Google Scholar
9. Zuo, R. Z., Fu, J., Lv, D. Y. and Liu, Y., J. Am. Ceram. Soc. 93, 2783 (2010).Google Scholar
10. Wang, R. P., Bando, H., Katsumata, T., Inaguma, Y., Taniguchi, H. and Itoh, M., Phys. Status Solidi RRL 3, 142 (2009).Google Scholar
11. Wu, W. J., Xiao, D. Q., Wu, J. G., Liang, W. F., Li, J. and Zhu, J. G., J. Alloys Comp. 509, L284L288 (2011).Google Scholar
12. Zuo, R. Z., Ye, C. and Fang, X. S., Jpn. J. Appl. Phys. 46, 67336736 (2007).Google Scholar
13. Uratani, Y., Shishidou, T., Ishii, F. and Oguchi, T., Jpn. J. Appl. Phys. 44, 71307133(2005)Google Scholar
14. Yao, Z. H., Liu, H. X., Liu, Y., Wu, Z. H., Cao, M. H. and Hao, H., Appl. Phys. Lett. 92, 142905 (2008).Google Scholar
15. Uchino, K. and Nomura, S., Ferroelectr. Lett. Sect. 44, 5561 (1982).Google Scholar
16. Du, H. L., Zhou, W. C., Luo, F., Zhu, D. M., Qu, S. B. and Pei, Z. B., J. Appl. Phys. 105, 124104 (2009).Google Scholar
17. Fukada, M., Saito, T., Kume, H. and Wada, T., IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 988993 (2008).Google Scholar
18. Wu, W. J., Xiao, D. Q., Wu, J. G., Li, J. and Zhu, J. G., J. Ceram. Soc. Jpn. 119, 654657 (2011)Google Scholar
19. Wang, Y. G., Xu, G., Ji, X. P., Ren, Z. H., Weng, W. G., Du, P. Y., Shen, G. and Han, G. R., J. Alloys Comp. 475, L2530 (2009).Google Scholar
20. Haun, M. J. and Cross, L. E., J. Appl. Phys. 62, 3331 (1987).Google Scholar