Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T03:48:13.586Z Has data issue: false hasContentIssue false

Rf Magnetron Sputter-Deposition of La0.5Sr0.5CoO3//Pt Composite Electrodes for Pb(Zr, Ti)O3 Thin Film Capacitors

Published online by Cambridge University Press:  10 February 2011

M. V. Raymond
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
H. N. Al-Shareef
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. A. Tuttle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. DiMos
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. T. Evans
Affiliation:
Radiant Technologies, Inc. Albuquerque, NM 87106
Get access

Abstract

La0.5Sr0.5CoO3 (LSCO) thin films have been deposited using RF magnetron sputterdeposition for use as an electrode material for Pb(Zr, Ti)O3 (PZT) thin film capacitors. The effect of the O2:Ar sputter gas ratio during deposition, on the LSCO film properties was investigated. It was found that the resistivity of the LSCO films deposited at ambient temperature decreases as the O2:Ar ratio was increased for both the as-deposited and annealed films. In addition, it was found that thin overlayers of LSCO tend to stabilize the underlying Pt//Ti electrode structure during subsequent thermal processing. The LSCO//Pt//Ti composite electrode stack has a low resistivity and provides excellent fatigue performance for PZT capacitors. Furthermore, the LSCO//Pt//Ti electrode sheet resistance does not degrade with annealing temperature and the electrode does not display hillock formation. Possible mechanisms for the stabilization of the Pt//Ti electrode with LSCO overlayers will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, J., Harmer, M. P., and Smyth, D. M., IEEE Proceedings of the Inter. Symp. on the Application of Ferroelectrics, pp. 111–5, Greenville, SC, September, 1992.Google Scholar
2. Yoo, I., Desu, S. B., and Xing, J. in Ferroelectric Thin Films III, eds. Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Proc. 310, pp. 365–77 (1993).Google Scholar
3. Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61 [13] 1537–9, 1992.Google Scholar
4. Lee, J., Johnson, L., Safari, A., Ramesh, R., Sands, T., Gilchrist, H., and Keramidas, V. G., Appl. Phys. Lett., 63 [1] 27–9, 1993.Google Scholar
5. Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res., 8 [1] 12–3, 1992.Google Scholar
6. Bellur, K. R., AI-Shareef, H. N., Auciello, O., Rou, S. H., Gifford, K. D., and Kingon, A. I., IEEE Proceedings of the Inter. Symp. on the Application of Ferroelectrics, pp. 448, Greenville, SC, September, 1992. IEEE Publication No. 92CH3080–9.Google Scholar
7. Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys., 33 [9B] 5207–10, 1994.Google Scholar
8. Eom, C. B., Dover, R. B. Van, Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett., 63 [18] 2570–2 (1993).Google Scholar
9. Cheung, J. T, Morgan, P. E. D., Neurgaonkar, R., Proceedings of the Fourth Inter. Symp. on Integrated Ferroelectrics, pp. 158–70, ed. Panholzer, R., 1992.Google Scholar
10. Cheung, J. T, Morgan, P. E. D., Lowndes, D. H., Zheng, X-Y, and Breen, J., Appl. Phys. Lett., 62 [17] 2045–7, 1993.Google Scholar
11. Lichtenwalner, D. J., Dat, R., Auciello, O., and Kingon, A. I., Ferroelectrics 152, 97102, 1994.Google Scholar
12. Lee, J., Ramesh, R., Dutta, B., Ravi, T. S., Sands, T., and Keramidas, V. G., Integrated Ferroelectrics, 5, 145–54, 1994.Google Scholar
13. Tuttle, B. A., AI-Shareef, H. N., Warren, W. L., Raymond, M. V., Headley, T. J., Voigt, J. A., Evans, J., and Ramesh, R., Microelectronic Engineering, 29, 223–30 (1995).Google Scholar
14. Al-Shareef, H. N., Tuttle, B. A., Warren, W. L., Dimos, D., Raymond, M. V., and Rodriguez, M. A., Appl. Phys. Lett., 68 [2] 272–4 1996.Google Scholar
15. A-Paz de Araujo, C., Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
16. AI-Shareef, H. N., Tuttle, B. A., Warren, W. L., Headley, T. J., Dimos, D., Voigt, J. A., and Nasby, R. D., J. Appl. Phys., 79 [2] 1013–6, 1996.Google Scholar
17. Al-Shareef, H. N., Auciello, O., and Kingon, A. I., J. Appl. Phys. 77 [5] 2146–54 (1995).Google Scholar
18. Mizusaki, J., Tabuchi, J., Matsuura, T., Yamauchi, S., and Fueki, K., J. Electrochem. Soc., 136 [7] 2082–8, 1989.Google Scholar
19. Mizusaki, J., Mima, Y., Yamauchi, S., Fueki, K., and Tagawa, H., J. Solid State Chem., 80, 102–11 (1989).Google Scholar
20. Goodenough, J. B., in “Progress in Solid State Chemistry,” Vol.5, pp. 145399, Pergamon Press, Ltd., Oxford 1971.Google Scholar
21. Al-Shareef, H. N., Dimos, D., Tuttle, B. A., and Raymond, M. V., submitted to J. Mater. Res., (1996).Google Scholar
22. Summerfelt, S. R., Kotecki, D., Kingon, A. I., and Al-Shareef, H. N., Mat. Res. Soc. Symp. Proc., 361, 257–62, (1995).Google Scholar