Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T15:51:14.716Z Has data issue: false hasContentIssue false

Resistive Switching Memory Based on Ferroelectric Polarization Reversal at Schottky-like BiFeO3 Interfaces

Published online by Cambridge University Press:  21 May 2012

Atsushi Tsurumaki-Fukuchi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
Hiroyuki Yamada
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
Akihito Sawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan
Get access

Abstract

We have fabricated a ferroelectric resistive switching device of Pt/Bi1-δFeO3 (BFO)/SrRuO3 (SRO) in which the conductivity of BFO layer was controlled by changing the Bi-deficiency concentration. The devices showed a bipolar-type resistive switching effect, i.e., zero-crossing hysteretic current–voltage (IV) characteristics. In addition, the IV characteristics in both high and low resistance states are nonlinear, which can avoid a read-error problem in a passive crossbar memory array. Resistive switching characteristics measured in pulse-voltage mode revealed that the resistance values in low resistance states vary with the amplitude and duration time of the pulsed-voltage stresses, indicating possibility of multilevel switching. On the basis of the experimental results, we discuss the potential of the Pt/BFO/SRO device for application in a large-capacity nonvolatile memory.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sawa, A., Mater. Today 11, 28 (2008).Google Scholar
2. Waser, R., Dittmann, R., Staikov, G. and Szot, K., Adv. Mater. 21, 2632 (2009).Google Scholar
3. Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M. and Krijin, M. P. C. M., Phys. Rev. Lett. 73, 2107 (1994).Google Scholar
4. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. and Cheong, S.-W., Science 324, 63 (2009).Google Scholar
5. Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N. D., Barthélémy, A. and Bibes, M., Nature 460, 81 (2009).Google Scholar
6. Tsurumaki, A., Yamada, H. and Sawa, A., Adv. Funct. Mater. 22, 1040 (2012).Google Scholar
7. Lee, D., Yang, S. M., Kim, T. H., Jeon, B. C., Kim, Y. S., Yoon, J.-G., Lee, H. N., Beak, S. H., Eom, C. B. and Noh, T. W., Adv. Mater. 24, 402 (2012).Google Scholar
8. Pantel, D., Chu, Y.-H., Martin, L. W., Ramesh, R., Hesse, D. and Alexe, M., J. Appl. Phys. 107, 084111 (2010).Google Scholar
9. Kim, T. H., Baek, S. H., Yang, S. M., Jang, S. Y., Ortiz, D., Song, T. K., Chung, J.-S., Eom, C. B., Noh, T. W. and Yoon, J.-G., Appl. Phys. Lett. 95, 262902 (2009).Google Scholar
10. Lee, M.-J., Seo, S., Kim, D.-C., Ahn, S.-E., Seo, D. H., Yoo, I.-K., Baek, I.-G., Kim, D.-S, Byun, I.-S., Kim, S.-H., Hwang, I.-R., Kim, J.-S., Jeon, S.-H. and Park, B. H., Adv. Mater. 19, 73 (2007).Google Scholar
11. Shin, J., Kim, I., Biju, K. P., Jo, M., Park, J., Lee, J., Jung, S., Lee, W., Kim, S., Park, S. and Hwang, H., J. Appl. Phys. 109, 033712 (2011).Google Scholar