Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:55:35.820Z Has data issue: false hasContentIssue false

Residual Stresses Analysis in Diamond Layers Deposited on Various Substrates

Published online by Cambridge University Press:  15 February 2011

D. Rats
Affiliation:
LCSR, CNRS, IC av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France).
L. Bimbault
Affiliation:
LMP, URA 131, 40 av. du Recteur Pineau, 86022 Poitiers (France).
L. Vandenbulcke
Affiliation:
LCSR, CNRS, IC av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France).
R. Herbin
Affiliation:
LCSR, CNRS, IC av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France).
K. F. Badawi
Affiliation:
LMP, URA 131, 40 av. du Recteur Pineau, 86022 Poitiers (France).
Get access

Abstract

A major problem for diamond coating applications is that diamond films tend to exhibit poor adherence on many. substrates and typically disbond at thicknesses of the order of few micrometers due especially to residual stresses. Residual stresses in diamond are composed of thermal expansion mismatch stresses and intrinsic stresses induced during film growth. Diamond films were deposited in a classical microwave plasma reactor from hydrocarbon-hydrogen-oxygen gas mixtures. Thermal stresses were directly calculated from Hook's law. On silicon substrate, intrinsic stresses were deduced by difference from measurements of total stresses either by the curvature method or by X-ray diffraction using the sin 2ψ method. These investigations allow us to discuss the origin of the intrinsic stresses. The residual stress level was also investigated by Raman spectroscopy as a function of the deposition conditions and substrate materials (SiO2, Si3N4, Si, SiC, WC-Co, Mo and Ti-6A1-4V). We show that the thermal stresses are often preponderant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Windishmann, H. and Epps, G. F., J. Appl. Phys. 69 (4), 2231 (1991).Google Scholar
2. Berry, B. S., Pritchet, W. C., Cuomo, J. J., Guarnieri, C. R. and Whitehair, S. J., Appl. Phys. Lett. 57 (3), 302 (1990).Google Scholar
3. Nemanich, R.J., Solin, S.A. and Martin, R. M., Phys. Rev. B 23, 6348 (1981).Google Scholar
4. Knight, D. S and White, W. B, J. Mat. Res. 4 (2), 385 (1989).Google Scholar
5. IIIAger, J. W. and Drory, M. D., Phys. Rev. B 48 (4), 2601 (1993).Google Scholar
6. Chalker, P. R., Jones, A.M. Johnston, C. and Buckley-Golder, I. M., Surf. Coat. Tech. 47, 365 (1991).Google Scholar
7. Rats, D., Bimbault, L., Vandenbulcke, L., Herbin, R., and Badawi, K. F., (submitted to J. Appl. Phys.).Google Scholar
8. Brenner, A. and Senderoff, S., J. Res. Natl. Bur. Stand. 42, 105 (1949).Google Scholar
9. Goudeau, Ph Badawi, K. F., Naudon, A. and Gladyszewski, G., Appl. Phys. Lett 62 (3), 246 (1993).Google Scholar
10. Touloukian, Y.S., Kirby, R.K., Taylor, R. E. and Lee, T. Y., Thermophysical Properties of Matter: Vol. 13. Thermal Expansion of Nonmetallic Solids (Plenum Press, New York, 1977).Google Scholar
11. Pickrell, D. J., Kline, K. A. and Taylor, R. E., Appl. Phys. Lett., 64 (18), 2353 (1994).Google Scholar
12. Shäfer, L., Jiang, X. and Klages, C.P., in Applications of Diamond and Related Materials, edited by Y., Tzeng, M., Yoshikawa, M., Murakawa, A., Feldmann (Elsevier Science Publishers B.V., Amsterdam, 1991), p. 121.Google Scholar
13. Schwarzbach, D., Haubner, R. and Lux, B., Diamond and Related Materials 3, 757 (1994).Google Scholar
14. Castex, L. and Badawi, K. F., Matériaux et Structures, (Editions Hermés, Paris, 1987) p. 277.Google Scholar
15. IIIAger, J. W., Veirs, D. K., and Rosenblatt, G. M., Phys. Rev. B 43 (8), 6491 (1991).Google Scholar
16. Prawer, S., Nugent, K. W., and Weiser, P. S., Appl. Phys. Lett. 65 (18) 2248 (1994).Google Scholar