Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T20:31:33.435Z Has data issue: false hasContentIssue false

Relaxations at GaN (1010) and (110) Surfaces

Published online by Cambridge University Press:  10 February 2011

Alessio Filipetti
Affiliation:
INFM and Dipartimento di Scienze Fisiche, Università di Cagliari, Italy
Manuela Menchi
Affiliation:
INFM and Dipartimento di Scienze Fisiche, Università di Cagliari, Italy
Andrea Bosin
Affiliation:
INFM and Dipartimento di Scienze Fisiche, Università di Cagliari, Italy
Giancarlo Cappellini
Affiliation:
INFM and Istituto di Fisica, Facoltà di Medicina e Chirurgia, Università di Cagliari, Cagliari, Italy
Get access

Abstract

We present an ab-initio calculation of GaN wurtzite (1010) and zinc-blende (110) surface structures and formation energies. Our method employs ultrasoft pseudopotentials and plane-wave basis. These features enable us to obtain accurate results using small energy cut-off and large supercells. The (110) surface shows a Ga-N surface dimer rotation of ∼ 14°, i.e. about one half that of the ordinary III–V non-nitride compounds, and a 5% contraction of the surface bond-length (more than the double that occurring in GaAs). For the (1010) surface, a layer rotation angle of about 11° and a bond-length contraction of 6% has been found. Zinc-blende GaAs (110) and wurtzite ZnO (1010) surfaces have been studied as well, for the sake of comparison. GaAs results are in good agreement with the experimental findings. For ZnO a large bond contraction and a rotation angle of around 11% result. Thus, our findings place GaN closer in behaviour to the highly ionic II–VI compounds than to the non-nitride III–V semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994)Google Scholar
2. Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N., MRS Symposia Proceedings No. 162 ( Materials Research Society, Pittsburgh, Pa, 1990); M.J. Paisley, Z. Sitar, J.B. Posthill, and R.F. Davis, J. Vac. Sci. Technol. A. 7, 701 (1989); G. Martin, S. Strite, J. Thornton, and H. Morkoc, Appl. Phys. Lett. 58, 2375 (1991).Google Scholar
3. Bechstedt, F. and Enderlein, R., Semiconductor Surfaces and Interfaces (Akademie-Verlag, Berlin, 1988)Google Scholar
4. Jaffe, J.E., Pandey, R., Zapol, P., Phys. Rev. B 53,4209 (1996)Google Scholar
5. Northrup, J.E., Neugebauer, J., Phys. Rev. B 53, 10477 (1996)Google Scholar
6. Laasonen, K., Pasquarello, A., Car, R., Lee, Changyol, Vanderbilt, D., Phys. Rev. B 47, 10142 (1993)Google Scholar
7. Satta, A., Fiorentini, V., Bosin, A., Meloni, F. and Vanderbilt, D., Gallium Nitride and related compounds MRS Proceedings Vol.395, Dupuis, R.D., Edmond, J.A., Ponce, F., and Nakamura, S., eds. (Material Research Society, Pittsburgh, PA, 1996), p.503 Google Scholar
8. Schröer, P., Krüger, P., Pollman, J., Phys. Rev. B 49, 17092 (1994)Google Scholar
9. Jaffe, J.E., Harrison, N.M., Hess, A.C., Phys. Rev. 49, 11153 (1994)Google Scholar
10. Duke, C. B., Meyer, R. J., Paton, A. and Mark, P., Phys. Rev. B 18, 4225 (1978)Google Scholar
11. Qian, G. X., Martin, R. M. and Chadi, D. J., Phys. Rev. B 37, 1303 (1988); 38 7649 (1988).Google Scholar