Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T10:52:36.918Z Has data issue: false hasContentIssue false

Relation Between the Electrical Resistivity and the First Stages of Precipitation

Published online by Cambridge University Press:  21 February 2011

G. Vigier
Affiliation:
Groupe d'Etudes de Métallurgie Physique et de Physique des Matériaux LA 341 INSA de LYON Bat., 502 69621, Villeurbanne, France
J.M. Pelletier
Affiliation:
Groupe d'Etudes de Métallurgie Physique et de Physique des Matériaux LA 341 INSA de LYON Bat., 502 69621, Villeurbanne, France
Get access

Abstract

Recent theories make it possible to think that electrical resistivity measurements could provide quantitative informations about the microstructural evolution. These theories are tested by studying the influence of the measuring temperature TM. Our experiments show that when spherical G.P. zones appear in AI-Zn and Al-kg no influence of TM is observed, while the formation of plate-like G.P zones in Al-Cu and Cu-Be alloys induce electrical variations function of TM . This morphology effect is roughly predicted by the theoretical models buv supplementary parameters must be taken into account to obtain a quantitative explanation of experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mott, N.F., J.Inst.Met., 60, 267, (1937).Google Scholar
2. Hillel, A.J., Edwards, J.T. and Wilkes, P., Philos. Pag., 32, 189, (1975).Google Scholar
3. Hillel, A.J. and Edwards, J.T., Philos. Mag., 35, 123, (1977).Google Scholar
4. Edwards, J.T. and Hillel, A.J., Philos. Mag., 35, 1221, (1977).Google Scholar
5. ROSSITER, P.L. and Wells, P., Philos. Mag., 24,245, (1971).Google Scholar
6. Merz, N. and Gerold, V., Metallkde, Z., 57, 607, (1966).Google Scholar
7. Laslaz, G.,Thesis, University of Grenoble, France, (1978).Google Scholar
8. Gerold, V., J. Phys. Rad., 23, 812, (1962).Google Scholar
9. Phillips, V.A. and Tanner, L.E., Acta Metall., 21, 441, (1973).Google Scholar
10. Rioja, R.J. and Laughlin, D.E., Acta Metall., 28. 1301, (1980).Google Scholar
11. Baur, R. and Gerold, V., Z. Metallkde, 57, 181, (1966).Google Scholar
12. Guillot, J.P., Thesis, University of Poitiers, France, (1973).Google Scholar
13. Vigier, G. and Merlin, J., Philos. Mag. G., 47, 299, (1983).Google Scholar
14. Pelletier, J.M., Vigier, G., Mai, C. and Livet, F., Met. Trans. A, 12, 903, (1981).Google Scholar
15. Osamura, K., Otsuka, N. and Murakami, Y., Philos. Mag. B., 45, 583 , (1982).Google Scholar
16. Mai, C., Livet, F. and Vigier, G., Scr. Metall., 15, 1179, (1981).Google Scholar
17. Pelletier, J.M., Vigier, G., Mai, C. and Borrelly, R., Acta Metall., under press.Google Scholar
18. Merlin, J., Vigier, G., Pelletier, J.M. and Borrelly, R., Surf. Sci., 106, 556, (1981).Google Scholar
19. Wilkes, P., Acta Metall. 16, 153 and 863, (1968).Google Scholar
20. Hillel, A.J. to be published.Google Scholar
21. Hillel, A.J. and Rossiter, P.L., Philos. Pag., B 44, 383, (1981).Google Scholar
22. LEONARD, P., J. Phys. Rad. 28, 326, (1967).Google Scholar
23. GILDER, H.M., Phys. Rev. B, 25. 650, (1982).Google Scholar