Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-29T02:54:16.726Z Has data issue: false hasContentIssue false

Reduction of Ca and F Segregated at the Surface of a Si/CaF2/Si(100) Structure By Solid Phase Epitaxy of Si

Published online by Cambridge University Press:  28 February 2011

Masayoshi Sasaki
Affiliation:
VLSI Research Laboratory, OKI Electric Industry Co.,Ltd. Higashiasakawa, Hachioji, Tokyo 193, Japan
Hiroshi Onoda
Affiliation:
VLSI Research Laboratory, OKI Electric Industry Co.,Ltd. Higashiasakawa, Hachioji, Tokyo 193, Japan
Norio Hirashita
Affiliation:
VLSI Research Laboratory, OKI Electric Industry Co.,Ltd. Higashiasakawa, Hachioji, Tokyo 193, Japan
Get access

Abstract

Epitaxial Si films have been grown on single crystalline CaF2 on (l00)Si substrates by molecular beam epitaxy(MBE) or combination of MBE and solid phase epitaxy(SPE) of deposited amorphous Si(a-Si). It has been found that Ca and F segregate at the surface of the Si grown by MBE. The high energy electron diffraction (RHEED) patterns from the Si surface show the superstructures which are caused by the existence of Ca and F at the Si surface. To reduce the segregation effect, SPE process has been successfully applied to Si epitaxy. The Si SPE performed on top of the MBE Si layer reduces the Ca concentration at the Si surface by an order of magnitude, although the segregation effect is not completely suppressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Farrow, R.F.C., Sullivan, P.W., Williams, G.M., Jones, G.R., and Cameron, D.C., J.Vac.Sci.Technol. 19, 415(1981)Google Scholar
2.Asano, T., Ishiwara, H., and Kaifu, N., Jpn.J.Appl.Phys. 22, 1474 (1983).Google Scholar
3.Fathauer, R.W. and Showalter, L.J., Appl.Phys.Lett. 4d, 519 (1984).Google Scholar
4.Pfeiffer, L., Phillips, J.M., Smith, T.P. III, Augustyniak, W.M., and West, K.W., Appl.Phys.Lett. 45, 947 (1985).Google Scholar
5.Asano, T. and Ishiwara, H., J.Appl.Phys. 55, 3566(1984)Google Scholar
6.Sasaki, M., Hirashita, N., Onoda, H., and Hagiwara, S., Appl.Phys.Lett. 46, 1056 (1985).Google Scholar
7.Smith, T.P., Phillips, J.M., Augstyniak, W.M., and Stiles, P.J., Appl.Phys. Lett. 45, 907 (1984).Google Scholar
8.Asano, T., Wakabayashi, S., and Ishiwara, H., in Extended Abstracts of the 16th Conference on Solid State Devices and Materials (Kobe Japan, 1984), p 519.Google Scholar
9.Onoda, H., Katoh, T., Hirashita, N., and Sasaki, M., in Extended Abstracts of the 17th Conference on Solid State Devices and Materials (Tokyo, 1985), p 151.Google Scholar
10.Onoda, H., Katoh, T., Hirashita, N., and Sasaki, M., in Technical Digests of International Electron Device Meeting (IEEE, Washington, 1985), in press.Google Scholar
11.Ino, S., Jpn.J.Appl.Phys. 16, 891 (1977).Google Scholar
12.Jong, T. de, Saris, F.S., Y.Tamminga,and Haisma, J., Appl.Phys.Lett. 44, 445 (1984).Google Scholar
13.Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J.Appl.Phys. 49, 3906 (1978).Google Scholar