Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-29T06:06:20.639Z Has data issue: false hasContentIssue false

Reduced Mobility and PPC in In.20Ga.80As/Al.23Ga.77 as Hemt Structure

Published online by Cambridge University Press:  26 February 2011

S. E. Schacham
Affiliation:
NASA Lewis Research Center
R. A. Mena
Affiliation:
NASA Lewis Research Center
E. J. Haugland
Affiliation:
NASA Lewis Research Center
S. A. Alterovitz
Affiliation:
NASA Lewis Research Center
Get access

Abstract

Transport properties of a pseudomorphic In .20Ga.80As/Al.23Ga.77As HEMT structure have been measured by Hall and SdH techniques. Two samples of identical structures but different doping levels were compared. Low temperature mobility measurements as a function of concentration shows a sharp peak at a Hall concentration of 1.9.1012/cm2. This concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23%) large PPC was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fletcher, R. and Zaremba, E., Phys. Rev. B, 38 (11), 7866 (1988).Google Scholar
2. Harris, J. J., Lacklison, D. E., Foxon, C. T., Seiten, F. M., Suckling, A. M., Nicholas, R. J. and Barnham, K. W. J., Semicond. Sci. Technol. 2, 783, (1987).Google Scholar
3. Jaffe, M., Sekiguchi, Y., East, J. and Singh, J., Superlattices and Microstructures, 4 (4/5), 395, (1988).Google Scholar
4. Ji, G., Henderson, T., Peng, C. K., Huang, D. and Morkoc, H., Solid-State Electronics, 33 (2), 247, (1990).Google Scholar
5. Schubert, E. F. and Ploog, K., IEEE Transactions on Electron Devices, 32 (9), 1868, (1985).Google Scholar
6. Mooney, P. M., J. Appl. Phys., 67 (3), Rl, (1990)Google Scholar
7. Theis, T. N. and Wright, S.L., Appl. Phys. Lett., 48, 1374, (1986).Google Scholar
8. Battersby, S. T., Selten, F. M., Harris, J. J. and Foxon, C. T., Solid State Electronics, 31, 1083, (1988).Google Scholar
9. Kane, M. J., Aspley, N., Anderson, D. A., Taylor, L. L. and Kerr, T., J. Phys. C, 18, 5629, (1985).Google Scholar
10. Price, P. J., J. Vac. Sci. Technol., 19 (3), 599, (1981).Google Scholar
11. Ando, T., J. Phys. Soc. Jpn., 37, 1233, (1974).Google Scholar
12. Lacklison, D. E., Harris, J. J., Foxon, C. T., Hewett, J., Hilton, D. and Roberts, C., Semicond. Sci. Technol., 3, 633, (1988).Google Scholar