Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:33:35.519Z Has data issue: false hasContentIssue false

Recent Progress Toward an Integrated Multiscale-Multiphysics Model of Reactor Pressure Vessel Embrittlement

Published online by Cambridge University Press:  21 March 2011

B. D. Wirth
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
G. R. Odette
Affiliation:
University of California, Santa Barbara, Santa Barbara, CA 93106
R. E. Stoller
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The continued safe operation of nuclear reactors and their potential for lifetime extension depends on ensuring reactor pressure vessel integrity. Reactor pressure vessels and structural materials used in nuclear energy applications are exposed to intense neutron fields that create atomic displacements and ultimately change material properties. The physical processes involved in radiation damage are inherently multiscale, spanning more than 15 orders of magnitude in length and 24 orders of magnitude in time. This paper reports our progress in developing an integrated, multiscale-multiphysics (MSMP) model of radiation damage for the prediction of reactor pressure vessel embrittlement. Key features of the fully integrated MSMP model include: i) combined molecular dynamics (MD) and kinetic lattice Monte Carlo (KMC) simulations of cascade defect production and cascade aging to produce cross-sections for vacancy, self- interstitial and vacancy-solute cluster size classes for times on the order of seconds; ii) an integrated reaction rate theory and thermodynamic code to predict the evolution of nanostructural and nanochemical features for times on the order of decades; iii) a micromechanics model to calculate the resulting mechanical property changes. This paper will focus on the combined use of MD and KMC to simulate the long-term rearrangement (aging) of defects in displacement cascades and thus, produce late-time production cross-sections for vacancy and vacancy cluster features.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Odette, G. R., Wirth, B. D., Bacon, D. J. and Ghoniem, N. M., “Multiscale-Multiphysics Modeling of Radiation-Damaged Materials: Embrittlement of Pressure Vessel Steels”, Materials Research Society Bulletin, 26 (2001) 176.Google Scholar
2. Seeger, A., Proc. 2nd UN Int. Conf. on Peaceful Uses of Atomic Energy, Geneva, Vol. 6, United Nations, New York (1958) 20 Google Scholar
3. Robinson, M. T., J. Nucl. Mat. 216 (1994) 1.Google Scholar
4. Stoller, R. E., MRS Soc. Symp. Proc. 373 (1995) 21.Google Scholar
5. Calder, A. F. and Bacon, D. J., J. Nucl. Mat. 207 (1993) 25.Google Scholar
6. Odette, G.R., Scripta Met. 11, (1983) p. 1183.Google Scholar
7. Odette, G.R., in Microstructure of Irradiated Materials, edited by Robertson, I.M., Rehn, L.E., Zinkle, S.J., and Phythian, W.J. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, Pa, 1995) p. 137.Google Scholar
8. Odette, G.R. and Lucas, G.E., Radiation Effects & Defects in Solids 144 (1998) p. 189.Google Scholar
9. Wirth, B. D., Odette, G. R., Maroudas, D., and Lucas, G. E., J. Nucl. Mat. 244 (1997) 185.Google Scholar
10. Soneda, N., and Rubia, T. Diaz de la, Phil Mag A 78 (1998) p. 995.Google Scholar
11. Osetsky, Y.N., Bacon, D.J., Serra, A., Singh, B.N., and Golubov, S.I.Y., J. Nucl. Mat. 276 (2000) p. 65.Google Scholar
12. Wirth, B.D., Odette, G.R., Maroudas, D. and Lucas, G.E., J. Nuc. Mat. 276 (2000) p.33.Google Scholar
13. Jenkins, M. L., Kirk, M. A. and Phythian, W. J., J. Nucl. Matrl. 205 (1993) 16.Google Scholar
14. Caturla, M.J., Soneda, N., Alonso, E.A., Wirth, B.D. and Rubia, T. Diaz de la, J. Nuc. Mat., 276 (2000) p.13.Google Scholar
15. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50 (1) (1984) 45.Google Scholar
16. Wirth, B. D. and Odette, G. R., MRS Soc. Symp. Proc. 481 (1998) 151.Google Scholar
17. Domain, C. and Becquart, C. S., personal communication.Google Scholar
18. Wirth, B. D. and Odette, G. R., MRS Soc. Symp. Proc. 540 (1999) 637.Google Scholar
19. Mader, E. V., Kinetics of Irradiation Embrittlement and the Post-Irradiation Annealing of Nuclear Reactor Pressure Vessel Steels, Ph.D. Dissertation, University of California Santa Barbara (1995).Google Scholar