Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-12T08:09:45.480Z Has data issue: false hasContentIssue false

Recent Advances in Gamma Titanium Aluminide Alloys

Published online by Cambridge University Press:  26 February 2011

Young-Won (Y-W.) Kim*
Affiliation:
Metcut-Materials Research Group, P.O. Box 33511, Wright-Patterson Air Force Base, OH 45433–0511
Get access

Abstract

Gamma titanium aluminide alloys of current interest are two-phase alloys consisting of γ-TiAl phase as the matrix and a α2-Ti3Al phase as the second phase. The properties of these alloys depend on alloy composition, processing, microstructure, and their combination. Two major microstructural constituents are gamma grains and lamellar grains, the latter of which contain alternate layers of gamma (γ) and alpha-2 (α2) thin plates. The relative amounts and distribution of these two constituents are the main factors controlling mechanical properties. This paper reviews our current understanding of the composition/microstructure/property relationships. An extended discussion will be made on the fundamental aspects of the formation of lamellar structure during cooling and the evolution of microstructure occurring during thermomechanical treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ogden, H.R. et al. ., Trans. AIME, 191, 11501155 (1951).Google Scholar
2. Duwez, P. and Taylor, J.L., J. Metals, January 1952, 70.Google Scholar
3. Ogden, H.R. et al. ., Trans. AIME, 197, 267 (1953).Google Scholar
4. Ogden, H.R. et al. ., J. Metals, February 1953, 267272.Google Scholar
5. McAndrew, J.B. and Kessler, H.D., J. Metals, October 1956, 1348.Google Scholar
6. Blackburn, M.J. and Smith, M.P., AFML-TR-79–4056, May 1979.Google Scholar
7. Blackburn, M.J. et al. ., US Patent No. 4 294 615 (1981).Google Scholar
8. Blackburn, M.J. and Smith, M.P., AFWAL-TR-82–4086, June 1982.Google Scholar
9. Greenberg, B.A., Phys. Stat. Sol., 556, 5963 (1973).CrossRefGoogle Scholar
10. Shechtman, D. et al. ., Met. Trans., 5, 1373 (1974).CrossRefGoogle Scholar
11. Lipsitt, H.A. et al. ., Met. Trans. A, 6A, 1991 (November 1975).Google Scholar
12. Hug, G. et al. ., Phil. Mag. A, 54(1), 4765 (1986).Google Scholar
13. Hug, G. et al. ., Phil. Mag. A, 57(3), 499523 (1988).Google Scholar
14. Kim, Y-W., JOM, 41(7), 2430 (July 1989).CrossRefGoogle Scholar
15. Huang, S.C. et al. ., Microstructure/Property Relationships in Titanium Aluminides and Alloys, ed. Kim, Y-W./Boyer, R.R. (TMS, 1990) In print.Google Scholar
16. Tsujimoto, T. and Hashimoto, K., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 133, 1989) pp. 391396.Google Scholar
17. Hartig, Ch. et al. ., Sixth World Conference on Titanium, ed. Lacombe, P. et al. ., (Les Editions de Physique, Paris, II, 1989) pp. 10211026.Google Scholar
18. Mishurda, J.C. et al. ., same as Ref. 15.Google Scholar
19. McCullough, C. et al. ., Scripta Met., 22, 11311136 (1988).Google Scholar
20. Huang, S.C. and Siemers, P.A., Met. Trans. A, 20A, 18991906 (Oct. 1989).Google Scholar
21. Mishurda, J.C. et al. ., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 133, 1989) pp. 5762.Google Scholar
22. Kim, Y-W. and Froes, F.H., High Temperature Aluminides & Intermetallics, ed. Whang, S.H. et al. ., (TMS, 1990) pp. 465492.Google Scholar
23. Bumps, E.S. et al. ., Trans. AIME, 194, 609614 (1952).Google Scholar
24. Duwez, P. and Taylor, J.L., J. Metals, January 1952, 70.Google Scholar
25. Huang, S.C. et al. ., High-Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N.S. et al. ., (MRS Proc. 81, 1987) pp. 481486.Google Scholar
26. Elliott, R.P. and Rostoker, W., Acta Met., 2, 884885 (1954).Google Scholar
27. Blackburn, M.J., The Science, Technology and Application of Titanium, ed. Jaffee, R.I. and Promisel, N.E. (Pergamon, Oxford, 1970) pp. 63343.CrossRefGoogle Scholar
28. Kim, Y-W. and Shong, D.S., Met. Trans. (1991), accepted.Google Scholar
29. Perepezko, J.H., Chang, Y.A., Seitzman, L.E., Lin, J.C., Bonda, N.R., Jewett, T.J., and Mishurda, J.C., High Temperature Aluminides & Intermetallics, ed. Whang, S.H. et al. ., (TMS, 1990) pp. 1947.Google Scholar
30. Raman, A., Z. Metallkunde, 57, 535 (1966).Google Scholar
31. Hashimoto, K. et al. ., Trans. Japan Inst. Metals, 27(10), 741749 (1986).CrossRefGoogle Scholar
32. Domagala, R.F. and Rostoker, W., Trans. ASM, 47, 565577 (1955).Google Scholar
33. Taylor, J.L. and Duwez, P., Trans. AIME, 197, 253256 (Feb. 1953).Google Scholar
34. Bohm, H. and Lohberg, K., Z. Metallkunde, 49, 173178 (1958).Google Scholar
35. Nishiyama, Y. et al. ., 1987 Tokyo International Gas Turbine Congress, (Gas Turbine Congress Committee Proc., III, Tokyo, 1987) pp. 263269.Google Scholar
36. Huang, S.C., Hall, E.L., and Gigliotti, M.F.X., Sixth World Conference on Titanium, ed. Lacombe, P. et al. ., (Tes Editions de Physique, Paris, II, 1989), pp. 11091114.Google Scholar
37. Kawabata, T., Tamura, T., and Izumi, O., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 133, 1989) pp. 329334.Google Scholar
38. Huang, S.C. and Hall, E.L., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 133, 1989), pp. 373383.Google Scholar
39. Barinov, S.M. et al. ., Izvestiya Akademii Nauk SSSR, 5, 170174 (1983).Google Scholar
40. Kawabata, T. et al. ., Scripta Met., 22, 17251730 (1988).Google Scholar
41. Kim, Y-W., unpublished results (1990).Google Scholar
42. Hanamura, T. and Tanino, M., J. Mats. Sci. Ltrs., 8, 2428 (1989).Google Scholar
43. Morinaga, M. et al. ., Acta Met., 38(1), 2529 (1990).CrossRefGoogle Scholar
44. London, B. and Kelly, T.J., same as Ref. 15.Google Scholar
45. Kim, Y-W. and Kleek, J.J., PM'90 - World Conference on Powder Metallurgy, (The Institute of Metals, London, 1, 1990) pp. 272288.Google Scholar
46. Court, S.A., Vasudevan, V.K., and Fraser, H.L., Phil. Mag., 61, 144158 (1990).Google Scholar
47. Hug, G. and Veyssiere, P., Proc. International Symposium on Electron Microscopy in Plasticity/Fracture Research of Materials, Germany (1987).Google Scholar
48. Kim, Y-W., Krishnamurthy, S. et al. ., WRDC-TR-90–4021, May 1990.Google Scholar
49. Loiseau, A. and Lasalmonie, A., Mats. Sci. Engr., 67, 163168 (1984).CrossRefGoogle Scholar
50. Nishiyama, Y., Miyashita, T., Isobe, S., and Noda, T., High Temperature Aluminides & Intermetallics, ed. Whang, S.H. et al. ., (TMS, 1990) pp. 557584.Google Scholar
51. Maykuth, D.J., Battelle, DMIC Report 136B (May 29, 1961).Google Scholar
52. Greenberg, B.A., Scripta Met., 23, 631636 (1989).Google Scholar
53. Vasudevan, V.K. et al. ., Phil. Mag. Ltrs., 59(6), 299307 (1989).CrossRefGoogle Scholar
54. Hall, E.L. and Huang, S.C., High-Temperature Ordered Interretallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 132, Pittsburgh, 1989) pp. 693698.Google Scholar
55. Kawabata, T. et al. ., Acta Metall., 33(7), 13551366 (1985).Google Scholar
56. Huang, S.C., Scripta Met., 22, 18851888 (1988).Google Scholar
57. Donlon, W.T. et al. ., same as Ref. 15.Google Scholar
58. Shih, D.S. et al. ., same as Ref. 15.Google Scholar
59. Kim, Y-W., same as Ref. 15.Google Scholar
60. Larsen, D.E., same as Ref. 15.Google Scholar
61. Semiatin, S.L., Battelle, Columbus, OH (private communication) 1990.Google Scholar
62. Schwartz, D.S. and Soboyejo, W.O., same as Ref. 15.Google Scholar
63. Kim, Y-W. and Dimiduk, D.M. (unpublished work) 1990.Google Scholar
64. Soboyejo, W.O. (unpublished results) 1990.Google Scholar
65. Thompson, A.W. and Chu, W-Y., same as Ref. 15.Google Scholar
66. Huang, S.C. and Hall, E.L., to be published in Acta Met. (1990).Google Scholar
67. Krishnamurthy, S. and Kim, Y-W., same as Ref. 15.Google Scholar
68. Soboyejo, W.O., Midea, S.J., Schwartz, D.S., and Parzuchowski, M.J., same as Ref. 15.Google Scholar
69. Chan, K.S. and Kim, Y-W., same as Ref. 15.Google Scholar
70. Tsuyama, S., Mitao, S., and Minakawa, K., same as Ref. 15.Google Scholar
71. Kampe, S.L., Sadler, P., Larsen, D.E., and Christodoulou, L., same as Ref. 15.Google Scholar
72. Mitao, S., Tsuyama, S., and Minakawa, K., same as Ref. 15.Google Scholar
73. Takahashi, T. and Oikawa, H., same as Ref. 15.Google Scholar
74. Blackburn, M.J. and Smith, M.P., AFWAL-TR-80–4175 (November 1980).Google Scholar
75. O'Connell, T.E., AFML-TR-79–4177 (December 1979).Google Scholar
76. Martin, P.L. et al. ., Met. Trans. A, 14A, 2170 (October 1903).Google Scholar
77. Takahashi, T. and Oikawa, H., High-Temperature Ordered Interretallic Alloys III, ed. Liu, C.T. et al. ., (MRS Proc., 133, 1989) pp. 699704.Google Scholar
78. Takahashi, T. et al. ., Mat. Sci. Eng. A, 128, 195200 (1990).Google Scholar
79. Kleek, J.J. and Fim, Y-W., to be published in Scripta Met. (1991).Google Scholar
80. Soboyejo, W.O. et al. ., to appear in Mats. Sci. Engr. (1991).Google Scholar