Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T03:12:37.467Z Has data issue: false hasContentIssue false

Real-Time Feedback Control of Thermal CL2 Etching of GaAs Based on In-Situ Spectroscopic Ellipsometry

Published online by Cambridge University Press:  10 February 2011

T. Parent
Affiliation:
Center for Intelligent Manufacturing of Semiconductors (CIMOS), Materials Science & Engineering Department, University of Southern California, Los Angeles, CA 90089, parent@scf.usc.edu
R. Heitz
Affiliation:
Center for Intelligent Manufacturing of Semiconductors (CIMOS), Materials Science & Engineering Department, University of Southern California, Los Angeles, CA 90089, parent@scf.usc.edu
P. Chen
Affiliation:
Center for Intelligent Manufacturing of Semiconductors (CIMOS), Materials Science & Engineering Department, University of Southern California, Los Angeles, CA 90089, parent@scf.usc.edu
A. Madhukar
Affiliation:
Center for Intelligent Manufacturing of Semiconductors (CIMOS), Materials Science & Engineering Department, University of Southern California, Los Angeles, CA 90089, parent@scf.usc.edu
Get access

Abstract

In-situ, real-time, spectroscopic ellipsometry (SE) is utilized to study thermal chlorine etching of GaAs in an all ultra-high-vacuum interconnected growth and etching system. In the low temperature (between ˜40°C and ˜120°C) range, the etch rate is found to exhibit an Arrhenius dependence on substrate temperature with an activation energy of 11.6Kcal/mole and to be proportional to essentially the square root of the chlorine pressure. An SE feedback based real-time etch process control algorithm is developed and successfully implemented on the basis of the above noted input - output relation derived from the experimental data base.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Butler, S. W., Stefani, J., Sullivan, M., Maung, S., Barna, G., and Henck, S., J. Vac. Sci. Technol. A 12, 1984 (1994).Google Scholar
2. Rashap, B., Elta, M., Etemad, H., Fournier, J., Freudenberg, J., Giles, M., Grizzle, J., Kabamba, P., Khargonekar, P., Lafortune, S., Moyne, J., Tenehetzis, D., Terry, F., IEEE Trans. Semiconduct. Manufac. 8, 286, (1995)Google Scholar
3. Hankinson, M., Vincent, T., Irani, K. and Khargonekar, P., IEEE Trans. Semiconduct. Manufac. 10, 121, (1997)Google Scholar
4. Sugimoto, Y., Taneya, M., Akita, K., Hidaka, H., J. Appl. Phys. 68, 6415 (1990)Google Scholar
5. Takado, N., Kohmoto, S., Sugimoto, Y., Ozaki, M., Sugimoto, M., and Asakawa, K., J. Vac. Sci. Technol. B 10, 2711 (1992)Google Scholar
6. Lishan, D. G. and Hu, E. L., Appl. Phys. Lett. 56, 1667 (1990)Google Scholar
7. Lee, H. G., Fischer, R. J., Zydzik, G. J., and Cho, A. Y., J. Vac. Sci. Technol. B 11, 989 (1993)Google Scholar
8. Furuhata, N., Miyamoto, H., Okamoto, A., and Ohata, K., J. Appl. Phys. 65, 168 (1989)Google Scholar
9. Ha, J. H., Ogryzlo, E. A., and Polyhronopoulos, S., J. Chem. Phys. 89, 2844 (1988)Google Scholar
10. Ludviksson, A., Xu, M., and Martin, R. M., Surf. Sci. 282–300, 277 (1992)Google Scholar
11. Flaum, H. C., Sullivan, D. J. D., and Kummel, A. C., J. Chem. Phys. 100, 1634 (1994)Google Scholar
12. Balooch, M., Olander, D. R., and Siekhaus, W. J., J. Vac. Sci. Technol. B 4, 794 (1986)Google Scholar
13. Su, C., Hou, H., Lee, G. H., Dai, Z., Luo, W., Vernon, M. F., and Bent, B. E., J. Vac. Sci. Technol. B 11, 1222 (1993)Google Scholar
14. Su, C., Xi, M., Dai, Z., Vernon, M. F., Bent, B. E., Surf. Sci. 282, 357 (1993)Google Scholar
15. Wantanabe, H. and Matsui, S., Jpn. J. Appl. Phys. 32, 6158, (1993)Google Scholar
16. Senga, T., Matsumi, Y., Kawasaki, M., J. Vac. Sci. Technol. B 14, 3230 (1996)Google Scholar
17. Tanaka, N., Lopez, M., Matsuyama, I., and Ishikawa, T., J. Vac. Sci. Technol. B 13, 2250 (1995)Google Scholar
18. Mui, D. S. L., Strand, T. A., Thibeault, B. J., Coldren, L. A., Petroff, P. M., and Hu, E. L., J. Vac. Sci. Technol. B, 11, 2266 (1993)Google Scholar
19. Tanaka, N., Matsuyama, I., Ishikawa, T., Jpn. J. Appl. Phys. 33, 754 (1994)Google Scholar
20. Furuhata, N., Miyamoto, H., Okamoto, A., and Ohata, K., J. Electron. Mater. 19, 201 (1990)Google Scholar
21. Wong, K. and Ogryzlo, E. A., Can. J. Chem. 73, 735 (1995)Google Scholar
22. Kohmoto, S., Ide, Y., Sugimoto, Y., Asakawa, K., Jpn. J. Appl. Phys. 32, 5796 (1993(Google Scholar
23. Maracas, G. N., Kuo, C. H., Anand, S., and Droopad, R., J. Appl. Phys. 77, 1701 (1995)Google Scholar
24. Yao, H., Snyder, P. G., and Woollam, J. A., J. Appl. Phys. 70, 3261 (1991)Google Scholar
25. Lautenschlager, P., Garriga, M., Logothetidis, S., Cardona, M., Phys. Rev. B 35, 9174 (1987)Google Scholar
26. DeLouise, L. A., J. Chem. Phys. 94, 1528 (1991)Google Scholar
27. Ohno, T., Proc. 2nd Topical Meeting on Structural Dynamics of Epitaxy and Quantum Mechanical Approach, pg 23, Jan. 22–23, 1997, Kobe, JapanGoogle Scholar
28. Rosen, G., Parent, T., Chen, P., Wang, C., Heitz, R., Nagarajan, M., and Madhukar, A., 1998 American Control Conference, June 24–26, 1998, Philadelphia, PA (submitted).Google Scholar