Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T01:05:21.979Z Has data issue: false hasContentIssue false

Real Time Structural Electrochemistry of Platinum Clusters using Dispersive XAFS

Published online by Cambridge University Press:  15 February 2011

P. G. Allen
Affiliation:
Electronics Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545
S. D. Conradson
Affiliation:
Electronics Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545
M. S. Wilson
Affiliation:
Electronics Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545
S. Gottesfeld
Affiliation:
Electronics Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545
I. D. Raistrick
Affiliation:
Electronics Research Group, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Chemical reference tables state that the standard potential for the reaction of Pt with water, Pt + 2H2O → Pt(OH)2 + 2H+ + 2e, is 0.98 V, and electrochemical studies propose that this reaction may occur at potentials as low as 0.8 V [1–5]. Using dispersive x-ray absorption finestructure (XAFS) spectroscopy [6], we have directly probed the structural evolution of a Pt catalyst operating in-situ in a polymer electrolyte [7] fuel cell during cyclic voltammetry. The changes in the number of Pt and O nearest-neighbors and the Pt charge demonstrate a close correspondence with features in the voltammogram. Because dispersive XAFS is very sensitive to detecting structural changes, we have been able to detect the presence of chemisorbed oxygen at potentials of 0.6–0.9 V in the anodic sweep. Since double-layer charging is regarded as the only process in this region for bulk Pt [3–5], these results may reflect a limitation of previous (indirect) studies on Pt electrochemistry, or they may indicate that these clusters are different from their bulk metal counterparts. Exploiting the timeresolving capability of dispersive XAFS, we also monitored changes in the Pt charge and the number of O and Pt nearest-neighbors during the electrochemical oxidation and reduction of the Pt clusters in real-time. The results are inconsistent with those expected from the placeexchange mechanism [8–11] for the formation of the surface oxide on bulk Pt electrodes in aqueous solution;

Our current model for understanding these behaviors is that, relative to bulk Pt, unusual types of surface sites play a major role in determining the reactivity of these clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angerstein-Kozlowska, H., Conway, B. E. and Sharp, W. B. A., J. Electroanal. Chem. 43, 9 (1973).Google Scholar
2. Angerstein-Kozlowska, H. and Conway, B. E., J. Electroanal. Chem. 95, 9 (1979).Google Scholar
3. Tarasevich, M. R., Sadkowski, A. and Yeager, E., in Comprehensive Treatise of Electrochemist, Vol.7. edited by Conway, B. E., Bockris, J. O'M, Yeager, E., Khan, S. U. M. and White, R. E. (Plenum, New York, 1983), pp. 301398.Google Scholar
4. Burke, L. D. and Lyons, M. E. G., in Modern Aspects of Electrochemistry, Vol.18, edited by White, R. E., Bockris, J. O'M. and Conway, B. E., (Plenum, New York, 1986) pp. 169248.Google Scholar
5. Conway, B. E., Progr. Surf. Sci. 16, 1 (1984).Google Scholar
6. Allen, P. G., Conradson, S. D. and Penner-Hahn, J. E., accepted to J. Appl. Cryst. (1992).Google Scholar
7. Wilson, M. S. and Gottesfeld, S., J. App. Electrochem. 22, 1 (1992).Google Scholar
8. Vetter, K. J. and Schultze, J. W., J. Electroanal. Chem. 34, 141 (1972).Google Scholar
9. Damjanovic, A., Yeh, L.-S. R. and Wolf, J. F., J. Electrochem. Soc. 127, 874 (1980).CrossRefGoogle Scholar
10. Gilroy, D., J. Electroanal. Chem. 71, 257 (1976).Google Scholar
11. Conway, B. E., Barnett, B., Angerstein-Kozlowska, H. and Tilak, B. V., J. Chem. Phys. 93, 8361 (1990).Google Scholar
12. Lee, P. A., Citrin, P. H., Eisenberger, P. and Kincaid, B. M., Rev. Mod. Phys. 53, 769 (1981).Google Scholar
13. Peuckert, M., Coenen, F. P., and Bonzel, H. P., Electrochimica Acta. 29, 1304 (1984).Google Scholar
14. Peuckert, M., Yoneda, T., Betta, R. A.Dalla and Boudart, M., J. Electrochem. Soc. 133, 944 (1986).Google Scholar
15. Mansour, A. N., Cook, J. W. Jr. and Sayers, D. E., J. Phys. Chem. 88, 2330 (1984).Google Scholar
16. Ross, P. N. Jr., presented at the SSRL Users Conference, Stanford, CA, 1992 (unpublished).Google Scholar
17. Allen, P. G., Conradson, S. D., Raistrick, I. D., Gottesfeld, S., Mustre de Leon, J., Lovato, M. V. and Stonehart, P., Proc. Electrochem. Soc., Vol.921, (1992).Google Scholar
18. van Hardeveld, R. and Hartog, F, Adv. Catal. 22, 75 (1972).Google Scholar
19. Martens, J.H.A.; Prins, R.; Koningsberger, D.C. J. Phys. Chem. 1989, 93, 31793185 Google Scholar
20. Itaya, K., Sugawara, S., Sashikata, K. and Furuya, N., J. Vac. Sci. Technol. A. 8, 515 (1990).Google Scholar
21. Rodes, A., Zamakhchari, M. A., Achi, K. El. and Clavilier, J., J. Electroanal. Chem. Interfacial Electrochem. 305, 115 (1989).Google Scholar