Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-05T17:33:07.699Z Has data issue: false hasContentIssue false

Reactive Ion Etching (RIE) Induced p- to n-Type Conversion in Extrinsically Doped p-Type HgCdTe

Published online by Cambridge University Press:  10 February 2011

C. A. Musca
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
E. P. G. Smith
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
J. F. Siliquini
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
J. M. Dell
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
J. Antoszewski
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
J. Piotrowski
Affiliation:
Vigo System Ltd., HERY 23, 01-494, Warsaw, Poland
L. Faraone
Affiliation:
Department of Electrical and Electronic Engineering, The University of Western Australia, Nedlands, WA, 6907, Australia, charlie@ee.uwa.edu.au
Get access

Abstract

Mercury annealing of reactive ion etching (RIE) induced p- to n-type conversion in extrinsically doped p-type epitaxial layers of HgCdTe (x=0.3 1) has been used to reconvert n-type conversion sustained during RIE processing. For the RIE processing conditions used (400mT, CH4/H2, 90 W) p- to n-type conversion was observed using laser beam induced current (LBIC) measurements. After a sealed tube mercury anneal at 200°C for 17 hours, LBIC measurements clearly indicated no n-type converted region remained. Subsequent Hall measurements confirmed that the material consisted of a p-type layer, with electrical properties equivalent to that of the initial as-grown wafer (NA-ND=2×1016 cm−3,.=350 cm2.V−1. S−1).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carey, G. P., Friedman, D. J., Wahi, A. K., Shih, C. K., and Spicer, W. E., J. Vac. Sci. Technol. A 6, p. 2736 (1988).Google Scholar
2. Belas, E., Franc, J., Toth, A., Moravec, P., Grill, R., Sitter, H., and Hosch, P., Semicond. Sci. Technol. 8, p. 1116 (1996).Google Scholar
3. Bubulac, L. O., Tennant, W. E., Lo, D. S., Edwall, D. D., Robinson, J. C., Chen, J. S., and Bostrup, G., J. Vac. Sci. Technol. A 5, p. 3166 (1987).Google Scholar
4. Bubulac, L. O., Tennant, W. E., Shin, S. H., Wang, C. C., Lanir, M., Gertner, E. R., and Marshall, E. D., Japanese J. App. Phys. 19, p. 495 (1979).Google Scholar
5. Belas, E., Grill, R., Franc, J., Toth, A., Hoschl, P., Sitter, H., Moravec, P., J. Cryst. Growth 159, p. 1117, (1996).Google Scholar
6. Panin, G., Fernandez, P., and Piqueras, J., Semicond. Sci. Technol. 11, p. 1354 (1996).Google Scholar
7. Siliquini, J.F., Dell, J. M., Musca, C. A., Smith, E. P. G., Faraone, L., and Piotrowski, J., Appl. Phys. Lett. in press, Jan (1998)Google Scholar
8. Jones, C. L., Quelch, M. J. T., Capper, P., and Gosney, J. J., J. Appl. Phys. 53, p. 9080 (1982).Google Scholar
9. Sasaki, T., Oda, N., Kawano, M., Sone, S., Kanno, T., and Saga, M., J. Cryst. Growth 117, p. 222 (1992).Google Scholar
10. Bajaj, J., Tennant, W.E., Zucca, R., and Irvine, S.J., Semicond. Sci. Technol. 8, p. 872 (1993).Google Scholar
11. Siliquini, J. F., Dell, J. M., Musca, C. A. and Faraone, L., Appl. Phys. Lett. 70(25) p. 3443 (1997)Google Scholar
12. Wallmark, J. Torkel, Proc. IRE, 45, p. 474 (1957).Google Scholar