Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T13:12:15.384Z Has data issue: false hasContentIssue false

Reactive ion Etching of Pt/PbZrxTi1−xO3/Pt Integrated Ferroelectric Capacitors

Published online by Cambridge University Press:  21 February 2011

J.J. Van Glabbeek
Affiliation:
Philips Research Laboratories, P.O.Box 80.000, 5600 JA Eindhoven, The, Netherlands
G.A.C.M. Spierings
Affiliation:
Philips Research Laboratories, P.O.Box 80.000, 5600 JA Eindhoven, The, Netherlands
M.J.E. Ulenaers
Affiliation:
Philips Research Laboratories, P.O.Box 80.000, 5600 JA Eindhoven, The, Netherlands
G.J.M. Dormans
Affiliation:
Philips Research Laboratories, P.O.Box 80.000, 5600 JA Eindhoven, The, Netherlands
P.K. Larsen
Affiliation:
Philips Research Laboratories, P.O.Box 80.000, 5600 JA Eindhoven, The, Netherlands
Get access

Abstract

Dry etching of a Pt/PbZrxTi1−xO3/Pt (Pt/PZT/Pt) ferroelectric capacitor stack with CF4/Ar plasmas with a reactive ion etching process for the fabrication of micrometer-sized integrated ferroelectric capacitors is described. The etch rate for both Pt and PZT is determined as a function of the process settings: Power, pressure and CF4-Ar gas flow ratio. A chemical enhancement of the etch rate is found for PZT. It is shown that it is possible to etch the Pt/PZT/Pt ferroelectric capacitor stack in a CF4/Ar plasma in a single lithographic process using patterning by photoresist masking. Redeposition processes occurring during etching are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J.F. and Araujo, C.A., Science 246, 1400, (1989).Google Scholar
2. Larsen, P.K., Cuppens, R. and Spierings, G.A.C.M., Ferroelectrics 128, 265, (1992).Google Scholar
3. Mancha, S., Ferroelectrics 135, 131 (1992).Google Scholar
4. Poor, M.R. and Fleddermann, C.B., J. Appl. Phys. 70, 3385 (1991).CrossRefGoogle Scholar
5. Saito, K., Choi, J.H., Fukuda, T. and Ohue, M., Jpn. J. Appl. Phys. 31, L1260 (1992).Google Scholar
6. Novotny, Z., Electrotech. Cat. 41 (1990) 39 (Chem. Abstr. 135, 50576 (1990)).Google Scholar
7. Spierings, G.A.C.M., Zon, J.B.A. van, Klee, M. and Larsen, P.K., Integrated Ferroe- lectrics (in press).Google Scholar
8. Spierings, G.A.C.M., Ulenaers, M.J.E., Kampschöer, G.L.M., Hal, H.A.M. van and Larsen, P.K., J. Appl. Phys. 70, 2290 (1991).Google Scholar
9. Klee, M., Eusemann, R., Waser, R. and Hal, H. van, J. Appl. Phys. 71, 1566, (1992).Google Scholar
10. Dormans, G.J.M., Keijser, M. de and Veldhoven, P.J. van, Mat. Res. Soc. Symp. Proc. 243, 203, (1992).Google Scholar
11. Visser, R.J., J. Vac. Sci. Technol. A 7, 189, (1989).Google Scholar
12. Visser, R.J. and Baggerman, J.A.G., Proc. 9th Int. Symp. on Plasma Chemistry 1989, Vol. II, p. 1039.Google Scholar
13. Gualandris, F., Pignatel, G.U., Rojas, S. and Scannell, J., J. Vac. Sci. Technol. B 3, 1604, (1985).CrossRefGoogle Scholar