Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-04T23:15:57.986Z Has data issue: false hasContentIssue false

Reaction And Interdiffusion at III-V Compound Semiconductor-Metal Interfaces

Published online by Cambridge University Press:  26 February 2011

L. J. Brillson*
Affiliation:
Xerox Webster Research Center, 800 Phillips Road 114–41D, Webster, N.Y. 14580.
Get access

Abstract

The characterization of III-V compound semiconductor-metal interfaces by surface science techniques has led to new relationships between interfacial chemistry and Schottky barrier formation. These and recent results on ternary alloy III-V compounds suggest a greater control of Schottky barrier heights by atomic scale techniques and advanced III-V materials than previously believed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brillson, L.J., Surface Sci. Repts. 2, 123 (1982); Intern. J. Phys. Chem. Solids 44, 703 (1983);Google Scholar
Handbook of Synchrotron Radiation II, edited by Marr, G. V. (North-Holland, Amsterdam, 1986), in press.Google Scholar
2. Margaritondo, G., Solid State Electron. 26, 499 (1983).Google Scholar
3. Williams, R.H., Contemp. Phys. 23, 329 (1982).Google Scholar
4. Schlüter, M., Thin Solid Films 93, 3 (1983);Google Scholar
Zunger, A., Thin Solid Films 104, 301 (1983)Google Scholar
5. Bachrach, R.Z., in Metal-Semiconductor Schottky Barrier Junctions, edited by Sharma, B.L. (Plenum, New York, 1984).Google Scholar
6. Hiraki, A., Nicolet, M.A., and Mayer, J.W., Appl. Phys. Lett. 18, 178 (1971).Google Scholar
7. Sinha, A.K. and Poate, J.M., Appl. Phys. Lett. 23, 666 (1973).Google Scholar
8. See, for example, Thin Films - Interdiffusion and Reactions, edited by Poate, J.M., Tu, R.N., and Mayer, J.W. (WileyTnterscience, New York, 1978), and references there in.Google Scholar
9. Sze, S.M., Physics of Semiconductor Devises, 2nd ed. (Wiley-tnterscience, New York, 1981), Ch.5.Google Scholar
10. Spicer, W.E., Lindau, L., Chye, P.W., Su, C.Y., J. Vac. Sci. Technol. 16, 1422 1979).Google Scholar
11. Williams, R.H., J. Vac Sci. Technol. 16, 1418 (1979).Google Scholar
12. Wieder, H.H., J. Vac. Sci. Technol. 15, 1498 (1978).Google Scholar
13. Brillson, L.J., Phys. Rev. Lett. 40, 260 (1978).Google Scholar
14. Freeouf, J.L. and Woodall, J. M., Appl. Phys. Lett. 39, 727 (1981).Google Scholar
15. Woodall, J.M. and Freeouf, J.L., J. Vac. Sci. Technol. 21, 574 (1982).Google Scholar
16. Cohen, M.L., Adv. Electron. Electon Phys. 51, 1 (1980) and references therein.Google Scholar
17. Tersoff, J., Phys. Rev. Lett. 57, 465 (1984).Google Scholar
18. Tersoff, J., J. Vac. Sci. Technol. B3, 1157 (1985).Google Scholar
19. Ludeke, R., Chiang, T.-C, and Miller, T., J. Vac. Sci. Technol. B1 581 (1985).Google Scholar
20. Mead, C.A., Solid State Electron. 9, 1023 (1966)Google Scholar
21. Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H., NBS Technical Notes 270–3–270–7 (USGPO Washington, D.C., 1968–1971)Google Scholar
22. Kendelewicz, T., Newman, N., List, R., Lindau, I., and Spicer, W.E., J. Vac. Sci. Technol. B3, 1206 (1985).Google Scholar
23. McGilp, J., J. Phys. C17, 2249 (1984).Google Scholar
24. Weaver, J.H., Grioni, M. and Joyce, J., Phys, . and Joyce, J., Phys. Rev. B31. 5348 (1985).Google Scholar
25. Ludeke, R., Surface Sci. 132, 143 (1983).Google Scholar
26. Brillson, L. J., Brucker, C.F., Stoffel, N.G., Katnani, A.D., Daniels, R., and Margaritondo, G., Surface Sci. 132, 212 (1983).Google Scholar
27. Brillson, L.J., Margaritondo, G., and Stoffel, N.G., Phys. Rev. Lett. 44, 667 (1980).Google Scholar
28. Brillson, L.J., Brucker, C.F., Margaritondo, G., Slowik, J., and Stoffel, N.G. J. Phys. Sci. Soc. Japan 49, 1089 (1980).Google Scholar
29. Shapira, Y., and Brillson, L.J., J. Vac Sci. Technol. Bl, 618 (1983).Google Scholar
30. Dow, J.D., Sankey, O.F., and Allen, R.E., Appl. Surf. Sci. 22/23, 937 (1985).Google Scholar
31. Brillson, L.J., Brücken, C.F., Katnani, A.D., Stoffel, N.G., and Margaritondo, G., Appl. Phys. Lett. 38 784 (1981).Google Scholar
32. Williams, R.H., Montgomery, V., and Varina, R.R., J. Phys. 28, L735 (1978)Google Scholar
33. Newman, N., Kendelewicz, T., Thompson, D., Pan, S.H., Eglash, S.J., and Spicer, W.E., Solid State Electron. 28, 307 (1985).Google Scholar
34. Montgomery, V., Williams, R.H., and G.P Srivastava, J. Phys. C14, L191 (1981).Google Scholar
35. Massies, J., Chaplart, J., Laviron, M., and Linh, N.T., Appl. Phvs. Lett. 38, 693 (1981).Google Scholar
36. Waldrop, J., J. Vac. Sci. Technol. B3, 1197 (1985).Google Scholar
37. Slowik, J., Brillson, L.J., and Richter, H.W., J. Appl. Phys. 58, 3154 (1985)Google Scholar
38. Brillson, L.J., Slade, M.L., Woodall, J.M., Kirchner, P., Pettit, G.D., Kelly, M., Tache, N., and Margaritondo, G., unpublished.Google Scholar
39. Davis, G.D., Beck, W.A., Byer, N.E., Daniels, R.R., and Margaritondo, G., J. Vac. Sci. Technol. A2, 546 (1984).Google Scholar
40. Kajiyama, K., Mizushima, Y., and Sakata, S., Appl. Phys. Lett. 23, 458 (1973);Google Scholar
Wieder, H.H., Appl. Phys. Lett. 38, 170 (1981).Google Scholar