Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-25T19:53:09.637Z Has data issue: false hasContentIssue false

Rapid Thermal Processing: Status, Problems and Options After the First 25 Years

Published online by Cambridge University Press:  21 February 2011

Fred Roozeboom*
Affiliation:
Philips Research, Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands.
Get access

Abstract

This paper reviews the current status, problems and options in RTP system and process design. Some commercial systems will be discussed along with some improvements that can still be made in temperature reproducibility, process control and yield. This includes some recent developments in temperature reproducibility by compensated emissivity control.

Uniformity issues regarding temperature and process gas hydrodynamics are highlighted in relation to reactor design. Especially in CVD applications, where radiative heat transfer may not longer dominate convective and conductive heat transfer, modeling and visualization of gas flow patterns are becoming increasingly important. Here, reactor design should be such that a laminar flow regime is reached without turbulence and without chemical memory effects upon switching to other gas compositions. Some flow visualization results are illustrated.

Some new options for micro- and nanocrystallization reactions are presented before we conclude with a technology roadmap to the 1-Gbit era.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fairfield, J.M. and Schwuttke, G.H., Solid St. Electron. 11, 1175 (1968).Google Scholar
2. Arai, M., Nishiyama, K., and Watanabe, N., Jpn. J. Appl. Phys. 20, L124 (1981).Google Scholar
3. Salzer, J.M., Solid State Technol. 35 (5), 62 (1992).Google Scholar
4. Moslehi, M.M., Davis, C., and Bowling, A., Texas Instruments Technical Journal 9 (5), 44 (1992).Google Scholar
5. Roozeboom, F. in Rapid Thermal Processing, Science and Technology (Fair, R.B., editor), Academic Press, New York, 1993, p. 349, and references therein.Google Scholar
6. Wolfe, W.L. and Zissis, G.J., eds., The infrared handbook, revised 2nd edition, 3rd printing, Environmental Res. Inst. of Michigan, Ann Arbor, 1989.Google Scholar
7. Incropera, F.P. and DeWitt, D.P., Fundamentals of heat and mass transfer, J. Wiley, New York, 1990.Google Scholar
8. Fair, R.B., editor, Rapid Thermal Processing, Science and Technology, Academic Press, New York, 1993.Google Scholar
9. Pouchert, C.J., The Aldrich Library of FT-IR Spectra, Edition 1, Vol. 3, Aldrich Chemical Company, Milwaukee, Wisconsin, 1989.Google Scholar
10. Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).CrossRefGoogle Scholar
11. Thompson, T.E. and Westerberg, E.R., Eur. Patent 339 458 (2 Nov. 1989).Google Scholar
12. Brown, B., Proc. 9th European RTP Users Group Meeting, Harlow (UK), Jan. 29, 1992.Google Scholar
13. Heller, P., Vervest, J.C.G. and Wilbrink, H.F., Vademecum for the Glass technique, Kluwer, Deventer, The Netherlands, 1992 (in Dutch) ; see also ref. 6.Google Scholar
14. Walk, H., German Patent DE 4 012 615 (24 Oct. 1991).Google Scholar
15. Vandenabeele, P. and Maex, K., Mater. Res. Soc. Symp. Proc. 224, 185 (1991).Google Scholar
16. Chang, J.C., Nguyen, T., Nakos, J.S. and Korejwa, J.W., SPIE Symp. Proc. 1595, 35 (1991).Google Scholar
17. Janssens, E.J. and Declerck, G. J., J. Electrochem. Soc. 125, 1696 (1978).Google Scholar
18. Lord, H.A., IEEE Trans. Semicond. Manufact. 1, 105 (1988).Google Scholar
19. Kakoschke, R., Mater. Res. Soc. Symp. Proc. 224, 159 (1991).CrossRefGoogle Scholar
20. Dilhac, J.-M., Nolhier, N. and Ganibal, C., SPIE Symp. Proc. 1804, (1992) in press.Google Scholar
21. Gat, A.S. and Westerberg, E.R., US Patent 4 680 451 (14 July 1987).Google Scholar
22. Robinson, M. and Ozias, A.E., US Patent 4 836 138 (6 June 1989).Google Scholar
23. Gronet, C.M. and Gibbons, J.F., patent application WO 91/10873 (25 July 1991).Google Scholar
24. Lee, C., U.S. Patent 4 857 689 (15 Aug. 1989).Google Scholar
25. Anderson, R.N., Deacon, T.E. and Carlson, D.K., Eur. Patent 476 307 (25 March 1992).Google Scholar
26. Chen, M.M., Berkowitz-Mattuck, J.B. and Glaser, P.E., Appl. Optics 2, 265 (1963).Google Scholar
27. Sheets, R.E., US Patents 4 649 261 (10 March 1987) and 4 698 486 (6 Oct. 1987); R.E.Sheets, Nucl. Instrum. Meth. Phys. Res. B6, 219 (1985).Google Scholar
28. Bedford, R.E. and Ma, C.K., J. Opt. Soc. Am. 64, 339 (1974).Google Scholar
29. Gouffé, A., Revue d'optique 24, 1 (1945).Google Scholar
30. Mordo, D., Wasserman, Y. and Gat, A., SPIE Symp. Proc. 1595, 52 (1991).Google Scholar
31. Gat, A. and French, M., US Patent 5 165 796 (24 Nov. 1992).Google Scholar
32. Snow, K.A., WO Patent 92/21011 (26 Nov. 1992); B.W. Peuse, A. Rosekrans and K.A. Snow, SPIE Eng. Symp. Proc. 1804, (1992) in press.Google Scholar
33. Schietinger, C.W., Adams, B.E. and Yarling, C.B., Mater. Res. Soc. Symp. Proc. 224, 23 (1991); C.W. Schietinger, and B.E. Adams, US Patent 5 154 512 (13 Oct. 1992).Google Scholar
34. Vandenabeele, P.M.N. and Maex, K.I.J., European Patent application, filed June 1992.Google Scholar
35. Dilhac, J.-M., Ganibal, C. and Castan, T., Appl. Phys. Lett. 55, 2225 (1989).Google Scholar
36. Vandenabeele, P., Schreutelkamp, R.J., Maex, K., Vermeiren, C. and Coppeye, W., Mater. Res. Soc. Symp. Proc. 260, 653 (1992).CrossRefGoogle Scholar
37. Campbell, S.A., Ahn, K.-H., Knutson, K.L., Liu, B.Y.H. and Leighton, J.D., IEEE Trans. Semicond. Manuf. 4, 14 (1991).Google Scholar
38. Giling, J., J. Electrochem. Soc. 129, 634 (1982).Google Scholar
39. Leys, M.R., Chemtronics 2, 155 (1987).Google Scholar
40. Vandenabeele, P., unpublished results.Google Scholar
41. Opdorp, C. van and Leys, M.R., J. Cryst. Growth 84, 271 (1987).Google Scholar
42. d'Heurle, F.M., Met. Trans. 2, 683 (1971).Google Scholar
43. Dirks, A.G. and Broek, J.J. van den, Acta Metallurgica 37, 9 (1989).Google Scholar
44. Vaidya, S. and Sinha, A.K., Thin Solid Films 75, 253 (1981).Google Scholar
45. Gorria, P., Orue, I., Plazaola, F. and Barandiaran, J.M., paper FQ12 at the 37th Conf. on Magnetism and Magn. Mater., Houston, Dec. 1-4, 1992.Google Scholar
46. Jagielinski, T., IEEE Trans. Magn. 19, 1925 (1983).CrossRefGoogle Scholar