Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T23:42:41.471Z Has data issue: false hasContentIssue false

Rapid, Room Temperature, High-Density Hydrogen Adsorption on Single-Walled Carbon Nanotubes at Atmospheric Pressure Assisted by a Metal Alloy

Published online by Cambridge University Press:  15 March 2011

M.J. Heben
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401-3393 (USA)
A.C. Dillon
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401-3393 (USA)
T. Gennett
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401-3393 (USA)
J.L. Alleman
Affiliation:
Chemistry Department, Rochester Institute of Technology, 85, Lomb Drive, Rochester, NY 14623-5604 (USA)
P.A. Parilla
Affiliation:
Chemistry Department, Rochester Institute of Technology, 85, Lomb Drive, Rochester, NY 14623-5604 (USA)
K.M. Jones
Affiliation:
Chemistry Department, Rochester Institute of Technology, 85, Lomb Drive, Rochester, NY 14623-5604 (USA)
G.L. Hornyak
Affiliation:
Chemistry Department, Rochester Institute of Technology, 85, Lomb Drive, Rochester, NY 14623-5604 (USA)
Get access

Abstract

Laser-generated, carbon single-walled nanotubes (SWNTs) adsorb hydrogen in a matter of minutes at room temperature and atmospheric pressure in the presence of a Ti-6Al-4V metal alloy. The unusual hydrogen adsorption properties are activated when the SWNTs are sonicated in nitric acid with a Ti-6Al-4V probe. The process cuts the SWNTs and introduces ∼15-40 wt% metal alloy into the previously pure single-walled nanotube material. Subsequent hydrogen adsorption occurs in two separate sites with a maximum adsorption capacity of ∼7 wt% on a total sample weight basis. Approximately 2.5 wt% hydrogen is evolved at 300 K while the remainder desorbs between 475-850 K. The pure metal alloy adsorbs ∼ 2.5 wt% H2, and evolvesydrogen with increasing temperature in a manner similar to the alloy-doped SWNTs. However, it is clear from studies presented here that the SWNT fraction is quite active in H2 uptake, adsorbing as much as 7 % on a SWNT weight basis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Turner, J.A. Science 285, 687689 (1999).Google Scholar
2. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. & Heben, M.J. Nature 386, 377379 (1997).Google Scholar
3. Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., colbert, D., Smith, K.A. & Smalley, R.E.Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
4. Wang, Q. & Johnson, J.K. J. Phys. Chem. 103, 48094813 (1999).Google Scholar
5. Wang, Q. & Johnson, J.K. J. Chem Phys. 110, 577586 (1999).Google Scholar
6. Rzepka, M., Lamp, P. & de la Casa-Lillo, M.A. J.Phys. Chem 102, 1089410898 (1998).Google Scholar
7. Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M. & Dresselhaus, M.S. Science 286, 1127 (1999).Google Scholar
8. Chen, P., Wu, X., Lin, J. & Tan, K.L. Science 285, 9193 (1999).Google Scholar
9. Yang, R.T. Carbon 38, 623641 (2000).Google Scholar
10. Chambers, A., Park, C., Baker, R.T.K. & Rodriguez, N.M. J. Phys. Chem.B 102, 4253 (1998).Google Scholar
11. Ahn, C.C., Ye, Y., Ratnakumar, B.V., Whitham, C., Bowman, R.C. & Fultz, B. Appl.Phys. Lett.73>, 33783380 (1998).,+3378–3380+(1998).>Google Scholar
12. Dillon, A.C. & Heben, M.J. Applied Physics A 72, 133142 (2001).Google Scholar
13. Dillon, A.C., Bekkedahl, T.A., Jones, K.M. & Heben, M.J. The Oxidative Opening and Filling by Hydrogen of Single Wall Carbon Nanotubes in Recent Advances in Physics andChemistry of Fullerenes and Related Materials (eds. Kadish, K. M. & Ruoff, R. S.)716-727 (Electrochemical Society Inc., Los Angeles, CA, 1996).Google Scholar
14. Dillon, A.C., Parilla, P.A., Jones, K.M., Webb, J.D., Landry, M.D. & Heben, M.J. in Proceedings of the 1997 U.S. D.O.E. Hydrogen Program Review, 237–253 (1997).Google Scholar
15. Dillon, A.C., Parilla, P.A., Jones, K.M., Riker, G. & , Heben, M.J. in Proceedings of the 1999 U.S. D.O.E. Hydrogen Program Review, 541–556 (1998).Google Scholar
16. Liu, J. et al. Science 280, 12531256 (1998).Google Scholar
17. Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., Parilla, P.A. & Heben, M.J. in Proceedings of the 2000 U.S. D.O.E. Hydrogen Program Review, (2000).Google Scholar
18. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T. & Smalley, R.E. Chem. Phys. Lett. 243, 4954 (1995).Google Scholar
19. Dillon, A.C., Gennett, T., Jones, K.M., Alleman, J.L., Parilla, P.A. & Heben, M.J. Adv. Mat. 11, 13541358 (1999).Google Scholar
20. Dillon, A.C., Parilla, P.A., Alleman, J.L., Perkins, J.D. & Heben, M.J. Chem. Phys. Lett. 316, 1318 (2000).Google Scholar
21. Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B. & Smalley, R.E. Chem. Phys. Lett. 282, 429434 (1998).Google Scholar
22. Lu, K.L., Lago, R.M., Chen, Y.K., Green, M.L.H., Harris, P.J.F. & Tsang, S.C. Carbon 34, 814816 (1996).Google Scholar
23. Gennett, T., Dillon, A.C., Alleman, J.L., Hassoon, F.S., Jones, K.M. & Heben, M.J. Chem. of Mat. 12, 599601 (2000).Google Scholar
24. Dillon, A.C., Bekkedahl, T.A., Cahill, A.F., Jones, K.M. & Heben, M.J. in Proceedings of the 1995 U.S. D.O.E. Hydrogen Program Review 521–542 (1995).Google Scholar
25. Wang, J. & McEnaney, B. Thermochimica Acta. 190, 143153 (1991).Google Scholar
26. Parilla, P.A., Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M. & Heben, M.J. Mat. Res. Soc. Proc. this volume (2000).Google Scholar
27. Heben, M.J. & Dillon, A.C. Science 287, 593 (2000).Google Scholar
28. Hirota, Y., Nakamura, T., Aihara, Y. & Hino, T. J. Nuc. Mat. 266, 831836 (1999).Google Scholar
29. Davis, J.W. & Smith, D.L. J. Nuc. Mat. 85, 7176 (1979).Google Scholar
30. Jiao, J. & Seraphin, S. J. Mater. Res. 13, 24382444 (1998).Google Scholar
31. Ishiyama, S., Fukaya, K., Eto, M. & Miya, N. Journal of Nuclear Science and Technology 37, 144152 (2000).Google Scholar
32. Lagrange, A.P. & Herold, A. Carbon 16, 235 (1978).Google Scholar
33. Brosha, E.L., Davey, J., Garzon, F.H. & Gottesfeld, S. J. Mater. Res. 14, 21382146 (1999).Google Scholar
34. Darkrim, F., Malbrunot, P. & Levesque, D. Hydrogen Storage in Carbon Nanotubes: A Monte Carlo Simulation of Adsorption at High Pressure in Hydrogen Energy Progress XII (eds. Bolcich, J. C. & Veziroglu, T. N.) 9851000 (International Association for Hydrogen Energy, 1998).Google Scholar
35. Stan, G. & Cole, M.W. J. Low Temp. Phys. 110, 539 (1998).Google Scholar
36. Williams, K.A. & Eklund, P.C. Chem. Phys. Lett. 320, 352358 (2000).Google Scholar
37. Gordon, P.A. & Saeger, R.B. Ind. Eng. Chem. Res. 38, 46474655 (1999).Google Scholar
38. Cheng, H., Pez, G., Kern, G., Kresse, G. & Hafner, J. Phys. Rev (in press) (2000).Google Scholar
39. Yeh, N.C., Enoki, T., Salamanca-Riba, L. & Dresselhaus, G. Mat. Res. Soc. Symp. Proc. 56, 467472 (1986).Google Scholar
40. Okamoto, Y., Saito, M. & Oshiyama, A. Physical Review B 56, R10016–R10019 (1997).Google Scholar
41. Tan, P., Tang, Y., Deng, Y.M., Li, F., Wei, Y.L. & Cheng, H.M. Appl. Phys. Lett. 75,15241526 (1999).Google Scholar